This process may evidently be continued. We may then state the following

Theorem: The rth polar of B with respect to C_n is C_{n-r} .

II.

Again let there be three distinct points A, B, and C on the same straight line l, and through the point C let the line l_1 be drawn perpendicular to l. Let lines l_2 and l_3 be drawn through A and B respectively, and let l_2 and l_3 intersect on l_1 . Let l_2 make an angle α with l, and l_3 make an angle β with l, and let a line l_4 be drawn through B, making an angle $n\beta$ with l. Let l_2 and l_4 intersect in D. Then just as in section I, the equation representing the locus of D is

(7)
$$k \left[x^{n} - \binom{n}{2} x^{n-2} y^{2} + \cdots \right]$$
$$= (x-c) \left[\binom{n}{1} x^{n-1} - \binom{n}{3} x^{n-3} y^{2} + \cdots \right],$$

where k = (a - c)/a and a = AC, and c = AB.

It is then evident that the theorem in section I holds for the curve represented by equation(7).

Ohio State University.

ON THE RECTIFIABILITY OF A TWISTED CUBIC.

BY DR. MARY F. CURTIS

(Read before the American Mathematical Society, April 27, 1918.)

GIVEN the twisted cubic

(1) $x_1 = at, x_2 = bt^2, x_3 = ct^3, abc \neq 0;$

to show that the condition that it is a helix is precisely the condition that it is algebraically rectifiable.

If (1) is a helix, then T/R, the ratio of curvature to torsion, is constant. Denoting differentiation with respect to t by