This process may evidently be continued. We may then state the following

Theorem: The r th polar of B with respect to C_{n} is C_{n-r}.

II.

Again let there be three distinct points A, B, and C on the same straight line l, and through the point C let the line l_{1} be drawn perpendicular to l. Let lines l_{2} and l_{3} be drawn through A and B respectively, and let l_{2} and l_{3} intersect on l_{1}. Let l_{2} make an angle α with l, and l_{3} make an angle β with l, and let a line l_{4} be drawn through B, making an angle $n \beta$ with l. Let l_{2} and l_{4} intersect in D. Then just as in section I, the equation representing the locus of D is

$$
\begin{align*}
& k\left[x^{n}-\binom{n}{2} x^{n-2} y^{2}+\cdots\right] \tag{7}\\
& \quad=(x-c)\left[\binom{n}{1} x^{n-1}-\binom{n}{3} x^{n-3} y^{2}+\cdots\right]
\end{align*}
$$

where $k=(a-c) / a$ and $a=A C$, and $c=A B$.
It is then evident that the theorem in section I holds for the curve represented by equation(7).

Ohio State University.

ON THE RECTIFIABILITY OF A TWISTED CUBIC.

```
BY DR. MARY F. CURTIS
```

(Read before the American Mathematical Society, April 27, 1918.)
Given the twisted cubic

$$
\begin{equation*}
x_{1}=a t, \quad x_{2}=b t^{2}, \quad x_{3}=c t^{3}, \quad a b c \neq 0 \tag{1}
\end{equation*}
$$

to show that the condition that it is a helix is precisely the condition that it is algebraically rectifiable.

If (1) is a helix, then T / R, the ratio of curvature to torsion, is constant. Denoting differentiation with respect to t by

