Multiplying (15) by m, we have

$$
C m \cdot n=C a_{12}=0
$$

Since $a_{12} \neq 0, C=0$. Likewise multiplying by n we see that $B=0$. Hence equation (14) becomes

$$
A \frac{\partial^{2} Z}{\partial u \partial v}=0 .
$$

Hence, the minimum surface is a surface of translation. The necessary and sufficient condition that a surface in hyperspace be a minimum surface is that the minimum lines on it are characteristics.

Massachusetts Institute of Technology.

SOME ALGEBRAIC CURVES.

BY DR. JAMES H. WEAVER.

(Read before the American Mathematical Socicty, April 28, 1917.)
In the following paper two algebraic curves are set up and some of their singularities are discussed. The author believes them to be new. At least a search through considerable of the literature on curves has failed to reveal them.

I.

Let there be any two distinct points A and B. Let the line joining A and B be drawn, and let the distance $A B=c$. Let there be drawn through A a line l_{1} making an angle θ with $A B$, and let there be drawn through B a line l_{2} making an angle $n \theta$ with $A B$ (n an integer). We also consider that $A B$, l_{1}, and l_{2} are in one plane. Let the intersection of l_{1} and l_{2} be C. It is required to find the locus of C.

Let A be the origin and let $A B$ be the x-axis. Then the equations of the lines l_{1} and l_{2} will be
(1) $y=x \tan \theta$,
(2) $y=(x-c) \tan (n \theta)$
respectively.

