3 sextactic points are contacts of tangents from the flexes P_3 . The 6 contacts of tangents from the sextactic points are the points P_{12} . The 12 contacts of tangents from P_{12} in turn are the points P_{24} , and so on ad infinitum.

UNIVERSITY OF OREGON.

RELATED INVARIANTS OF TWO RATIONAL SEXTICS.

BY PROFESSOR J. E. ROWE.

(Read before the American Mathematical Society September 4, 1918.)

LET the parametric equations of the R_3^6 , the rational curve of order six in three dimensions, be

(1)
$$\begin{aligned} x_i &= \delta^6{}_{it} \equiv a_i t^6 + 6 b_i t^5 + 15 c_i t^4 + 20 d_i t^3 + 15 e_i t^2 + 6 f_i t + g_i \quad (i = 1, 2, 3, 4), \end{aligned}$$

and let the parametric equations of the R_2^6 , the rational plane curve of order six, be of the form

$$\begin{aligned} x_1 &= \alpha_t^6 \equiv a + bt + ct^2 + dt^3 + et^4 + ft^5 + gt^6, \\ x_2 &= \beta_t^6 \equiv a' + b't + c't^2 + d't^3 + e't^4 + f't^5 + g't^6, \\ x_3 &= \gamma_t^6 \equiv a'' + b''t + c''t^2 + d''t^3 + e''t^4 + f''t^5 + g''t^6. \end{aligned}$$

It is well known that all plane sections of the R_3^6 are apolar to a doubly infinite system of binary sextics, and that all line sections of the R_2^6 are apolar to a triply infinite system of binary sextics. We shall let the four binary sextics δ_{it}^6 of (1) be four linearly independent sextics of the apolar system of the R_2^6 , and the α_t^6 , β_t^6 , γ_t^6 of (2) be three linearly independent sextics of the apolar system of the R_3^6 . Our purpose is to point out briefly the relation between the invariants of the R_2^6 and the invariants* of the R_3^6 .

By means of the twelve equations

34

^{*} This relation must not be confused with the correspondence between invariants of the R_{2^n} and covariant surfaces of the R_{3^n} .