equation is obtained, it is seen that the curve is a hypocycloid of three cusps. This is deduced in the following way:

The radius of curvature is found from (2) to be

$$
\begin{equation*}
R=\frac{2 p\left(3-p^{2}\right)}{\left(1+p^{2}\right)^{3 / 2}} . \tag{3}
\end{equation*}
$$

The length of arc is

$$
S=\int_{0}^{p} \frac{2 p\left(3-p^{2}\right)}{\left(1+p^{2}\right)^{5 / 2}} d p=-\frac{8}{3} \frac{1}{\left(1+p^{2}\right)^{3 / 2}}+\frac{2}{\left(1+p^{2}\right)^{1 / 2}}+\frac{2}{3},
$$

from which

$$
\begin{equation*}
\frac{3}{2}\left(S-\frac{2}{3}\right)=\frac{3 p^{2}-1}{\left(1+p^{2}\right)^{3 / 2}} \tag{4}
\end{equation*}
$$

In order to eliminate p from equations (3) and (4), form the expressions $R^{2} / 4$ and $\frac{9}{4}\left(S-\frac{2}{3}\right)^{2}$. It is seen at once that

$$
\begin{equation*}
\frac{R^{2}}{4}+\frac{9}{4}\left(S-\frac{2}{3}\right)^{2}=1, \quad \text { or } \quad R^{2}+9\left(S-\frac{2}{3}\right)^{2}=4 \tag{5}
\end{equation*}
$$

which is the intrinsic equation of a hypocycloid. The curvature of (2) is

$$
\begin{equation*}
k=\frac{\left(1+p^{2}\right)^{3 / 2}}{2 p\left(3-p^{2}\right)} \tag{6}
\end{equation*}
$$

also

$$
\begin{equation*}
\frac{d x}{d p}=\frac{2 p\left(3-p^{2}\right)}{\left(1+p^{2}\right)^{3}}, \quad \frac{d y}{d p}=\frac{2 p^{2}\left(3-p^{2}\right)}{\left(1+p^{2}\right)^{3}} \tag{7}
\end{equation*}
$$

From (6) and (7) it is seen that when $p=0$ or $\pm \sqrt{3}, d x / d p$ and $d y / d p$ become zero and $k=\infty$. Hence (5) is the equation of a hypocycloid of three cusps.

University of Colorado.

HERMITE'S WORKS.

Euvres de Charles Hermite. Publiées sous les auspices de l'Académie des Sciences par Emile Picard. Vol. IV. Paris, Gauthier-Villars, 1917. 8vo. 593 pp.
The present volume brings to a close the Euvres of Hermite. It contains about ninety papers arranged chronologically, dating from 1879 and continuing to the year of his death, 1901.

