1918.]

where

 $f(x) = r_0 + r_1 x + \ldots + r_{p-2} x^{p-2},$

 $Z = e^{2i\pi/(p-1)}$, and r_i is the least positive residue of r^i , modulo p. Mr. Vandiver derives necessary and sufficient conditions that h be divisible by p^n , in terms of Bernoulli numbers, the argument used being different from those employed by Kummer and Kronecker in their treatment of the case n = 1.

20. In his first proof of the law of reciprocity between two ideals in a regular cyclotomic field Kummer gave the relation*

$$\begin{bmatrix} \frac{d^{p-1}\log\omega\ (e^{v})}{dv^{p-1}} \end{bmatrix}_{v=0} \equiv \frac{(\omega\ (1))^{p-1}-N\ (\omega)}{p} \pmod{p},$$

re
$$\omega\ (x) = a_{0}+a_{1}\ x+\ldots+a_{p-2}\ x^{p-2},$$

where

$$\omega = a_0 + a_1 \alpha + \ldots + a_{p-2} \alpha^{p-2},$$

$$\omega = a_0 + a_1 \alpha + \ldots + a_{p-2} \alpha^{p-2},$$

 $\alpha = e^{2i\pi/p}$ and $a_0, a_1, \ldots, a_{p-2}$ are integers, ω being prime to the prime p. In the present paper Mr. Vandiver gives a proof of this result which differs in character from that of Kummer. F. N. COLE,

Secretary.

NOTE ON ISOGENOUS COMPLEX FUNCTIONS OF CURVES.

BY PROFESSOR W. C. GRAUSTEIN.

(Read before the American Mathematical Society September 5, 1917.)

LET L be a continuous, closed and directed space curve, without multiple points, let -L be the same curve oppositely directed, and let F | [L] | be a function of L, such that F | [-L] | = -F | [L] |. Form the ratio

$$\frac{F\mid [L']\mid - F\mid [L]\mid}{\sigma},$$

where L' is the directed curve obtained from L by replacing an arc PP' of L by a second arc joining P with P', and σ

* Abhandlungen, Berlin Academy, 1859, p. 119, formula (7).