A THEOREM ON THE VARIATION OF A FUNCTION.

by dr. paUl R. RIDER.
The following is a well known theorem of differential geometry:

The differential quotient $d \phi / d s$ ($d s$ is the element of arc) of a function $\phi(u, v)$ at a point on a surface varies in value with the direction from the point. It equals zero in the direction tangent to the curve $\phi=c$, and attains its greatest absolute value in the direction normal to this curve.*

This theorem admits of a generalization if we use a more comprehensive definition of length, a definition sometimes employed in the calculus of variations. Let then

$$
S=\int_{t_{0}}^{t_{1}} F\left(x, y, x^{\prime}, y^{\prime}\right) d t
$$

be the generalized length of arc along a curve

$$
\begin{equation*}
x=x(t), \quad y=y(t) \tag{C}
\end{equation*}
$$

By reason of homogeneity conditions \dagger

$$
\begin{aligned}
S & =\int_{t_{0}}^{t_{1}} F(x, y, \cos \theta, \sin \theta) \sqrt{x^{\prime 2}+y^{\prime 2}} d t \\
& =\int_{s_{0}}^{s_{1}} F(x, y, \cos \theta, \sin \theta) d s
\end{aligned}
$$

in which

$$
\cos \theta=\frac{x^{\prime}}{\sqrt{{x^{\prime 2}+y^{\prime 2}}^{2}}, \quad \sin \theta=\frac{y^{\prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}}}}
$$

Then

$$
\begin{gathered}
A=\left|\frac{d \phi}{d S}\right|=e \frac{\phi_{x} d x+\phi_{y} d y}{F(x, y, \cos \theta, \sin \theta) d s} \\
=e \frac{\phi_{x} \cos \theta+\phi_{y} \sin \theta}{F(x, y, \cos \theta, \sin \theta)}
\end{gathered}
$$

[^0]
[^0]: * See Eisenhart, Differential Geometry, pp. 82-83.
 \dagger See Bolza, Vorlesungen über Variationsrechnung, p. 194.

