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A THEOREM ON THE VARIATION OF A FUNCTION. 

BY DE. PAUL R. RIDER. 

THE following is a well known theorem of differential 
geometry: 

The differential quotient d<j>jds (ds is the element of arc) of a 
function <j>(u, v) at a point on a surface varies in value with the 
direction from the point. It equals zero in the direction 
tangent to the curve <j> = c, and attains its greatest absolute 
value in the direction normal to this curve.* 

This theorem admits of a generalization if we use a more 
comprehensive definition of length, a definition sometimes 
employed in the calculus of variations. Let then 
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be the generalized length of arc along a curve 

(C) x = x(t), y = y(t). 

By reason of homogeneity conditions! 
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* See Eisenhart, Differential Geometry, pp. 82-83. 
t See Bolza, Vorlesungen über Variationsrechnung, p. 194. 


