A THEOREM ON SEMI-CONTINUOUS FUNCTIONS.

BY PROFESSOR HENRY BLUMBERG.

(Read before the American Mathematical Society December 1, 1917.)

RECENTLY G. C. Young* and A. Denjoy[†] have communicated theorems—those in Denjoy's memoir are of an especially comprehensive character-dealing, in particular, with point sets where the four derivatives of a given continuous function are identical. It is the purpose of this note to treat an analogous problem that arises when "derivative" is replaced by "saltus."[‡] However, instead of confining ourselves to "saltus," we prove a more general theorem that applies essentially to all semi-continuous functions.§ We preface the proof of this theorem with the following

LEMMA. Let $f_1(x)$ and $f_2(x)$ be two real, single-valued functions, defined in the linear continuum, such that everywhere $f_1(x) \geq f_2(x)$, and moreover, for every fixed real number k, the set S_k of points x where $f_1(x) \ge k$ and $f_2(x) < k$ is countable. Then $f_1(x)$ and $f_2(x)$ are identical except at most in a countable set.

Proof. Let $\{k_n\}, n = 1, 2, \dots \infty$, be a set of k's everywhere dense in the linear continuum. The set $|| S = \mathfrak{S}(S_{k_n})$, which consists of all of the elements of every S_{k_n} , is also countable. We show that $f_1(x) = f_2(x)$ for every given x not in S. For let $\{k_{i_n}\}$ be a monotone decreasing sequence of k_n 's having $f_2(x)$ as limit. Since x is given as not belonging to S, it must be that $f_1(x) < k_{i_n}$ for every n; for from $f_1(x) \ge k_{i_n}$ and $f_2(x) < k_{i_n}$, we would conclude that x belonged to $S_{k_{i_n}}$ and

|| In regard to the notation, compare Hausdorff, Grundzüge der Mengenlehre (1914), p. 5.

^{*} Acta Mathematica, vol. 37 (1914), p. 141.

[†] Journal de Mathématiques, ser. 7, vol. 1 (1915), p. 105. ‡ By the saltus (= oscillation) of a given function f(x) at the point xwe understand the greatest lower bound of the saltus of f(x) in the interval (ξ, η) , for all intervals (ξ, η) enclosing x as interior point. Cf. Hobson, The Theory of Functions of a Real Variable (1907), art. 180, and the author's paper, "Certain general properties of functions," Annals of Mathe-matics, vol. 18 (1917), p. 147. For the comprehensiveness of our result see the remark at the close, in conjunction with the theorem of this note and the corollaries

and the corollaries. § "Essentially" in the sense that every semi-continuous function is exhibitable as the "associated" function $\phi(x)$ of a "monotone decreasing interval-function ϕ_{ab} " (see theorem below).