AN UNDERVALUED KIRKMAN PAPER.

BY PROFESSOR LOUISE D. CUMMINGS.

(Read before the American Mathematical Society October 27, 1917.)

THE purpose of this note is to emphasize the importance in the theory of triad systems of a Kirkman^{*} paper, which appears to have been overlooked by all writers on this subject up to the present time.

A short explanation of the symbols employed in the paper is necessary. The symbol $Q_{x,y,z}$ denotes the greatest number of combinations that can be made with x elements, y at a time, so that no combination of z elements shall be twice employed; for brevity $Q_{x,3,2}$ is replaced by Q_x . The symbol V_x denotes the number of pairs possible with x elements that are excluded from Q_x . The symbol q_x denotes the number of triads formed with x elements, in which no duad is twice employed, q_x being not necessarily a maximum; v_x is the number of duads possible with x elements not employed in q_x . Four pairs such as 12, 23, 34, 41 forming a closed circle are denoted by the symbol C_4 .

The object of Kirkman's paper is to determine the value of Q_x , and to establish the following theorems:

$$Q_x = \frac{x(x-1)}{6} - \frac{V_x}{3},$$

where

$$V_{x} = \frac{x}{2} + 3k + 1 \text{ if } x = 6n - 2;$$

$$V_{x} = 6k + 4 \qquad `` x = 6n - 1;$$

$$V_{x} = \frac{x}{2} \qquad `` x = 6n, 6n + 2;$$

$$V_{x} = 0 \qquad `` x = 6n + 1, 6n + 3;$$

 $2^{m}(2k+1) = n$; n, m, x, k are integers ≥ 0 .

The case of special interest to us is that in which $V_x = 0$,

^{*} Cambridge and Dublin Math. Journal, vol. 2 (1847).