Also, the determinant of equations (7)-(9) vanishes, as may be seen at once from the fact that (9) may be obtained by subtracting β^{\prime} times (7) from β times (8). Hence* we have

Theorem II. The parameters of the points of contact of the three pairs of tangents that can be drawn to the R^{3} from three collinear points of the R^{3} are harmonic to the same quadratic, or form a set in involution.

Another result which may be derived as a corollary of Theorem I we shall state as

Theorem III. Lines on a point P of an R^{3} cut the R^{3} in pairs of residual points whose parameters are harmonic to the parameters of the points of contact of the two additional tangents drawn to R^{3} from P.

Although Theorem III may be regarded a corollary of Theorem I, it may be established independently. Thus: Let $P\left(d_{0}, d_{1}, d_{2}\right)$ be the point and $(\kappa x) \equiv \kappa_{0} x_{0}+\kappa_{1} x_{1}+\kappa_{2} x_{2}=0$ any line on P. Then $(\kappa d)=0$. The parameters of the residual points cut out of (1) by $(\kappa x)=0$ are the roots of

$$
\begin{equation*}
(\kappa \alpha) t^{2}+3(\kappa b) t+3(\kappa c)=0 \tag{10}
\end{equation*}
$$

and (10) is apolar to (8), for

$$
3(\kappa c) \beta+3(\kappa a) \alpha^{\prime}-3(\kappa b) \beta^{\prime}=0
$$

as may be shown from (3) and the fact that $(\kappa d)=0$.
Pennsylvania State College,
March, 1917.

EXAMPLES OF A REMARKABLE CLASS OF SERIES.

by PROFESSOR R. D. CARMICHAEL.
(Read before the American Mathematical Society, April 28, 1917.)

Two-Fold and One-Fold Expression of the Properties of Func-

 tions.1. In the development of analysis during the past generation it has frequently happened that functions have arisen which are analytic in a sector of the complex plane and in
[^0]
[^0]: * Salmon, Higher Algebra, fourth edition, p. 180.

