THE PROJECTION OF A LINE SECTION UPON THE RATIONAL PLANE CUBIC CURVE.

BY PROFESSOR JOSEPH EUGENE ROWE.

(Read before the American Mathematical Society, April 28, 1917.)

Introduction.

The rational plane curve of the third order, which we shall refer to as the R^{3}, is of the fourth class; that is, from an arbitrary point of the plane four tangents can be drawn to the curve. But if the point is selected on the R^{3} itself, the tangent at the point accounts for two of these tangents, and, therefore, from such a point only two additional tangents can be drawn to the curve. A line section yields three points of the R^{3} and these, in the manner just described, determine three pairs of additional tangents. An investigation of the points of a line and the six tangents so determined shows that the relations which exist among these are interesting as well as of a fundamental character.

We shall let

$$
\begin{equation*}
x_{i}=a_{i} t^{3}+3 b_{i} t^{2}+3 c_{i} t+d_{i} \quad(i=0,1,2) \tag{1}
\end{equation*}
$$

be the parametric equations of the points of the R^{3}, and it has been found convenient to use the following abbreviations:

$$
\begin{equation*}
\alpha=|a b c|, \quad \beta=|a b d|, \quad \beta^{\prime}=|a c d|, \quad \alpha^{\prime}=|b c d| . \tag{2}
\end{equation*}
$$

Also, it may be verified that the identities

$$
\begin{equation*}
a_{i} \alpha^{\prime}-b_{i} \beta^{\prime}+c_{i} \beta-d_{i} \alpha=0 \tag{3}
\end{equation*}
$$

exist among the coefficients in (1) and the Greek letters of (2).

The Choice of a Line Section.

As the parameters 0 and ∞ may be assigned to any two elements in a one-dimensional space, we select the line determined by the points of the R^{3} whose parameters are 0 and ∞. From (1) it follows that the coordinates of these points are d_{i} and a_{i}, respectively; hence the equation of the line determined by them is $|a d x|=0$, and the parameter of the third point

