and the points of S^{\prime}, a one-to-one reciprocal correspondence preserving limits.*

The following theorems may be easily established with the assistance of Theorem 18 of $\S 2$ and Theorem IV of my paper "On a set of postulates which suffice to define a numberplane." \dagger

Theorem A. Every two-dimensional space that satisfies Hilbert's plane axioms of Groups I and II (or Veblen's I-VIII) together with Axiom A is equivalent, from the standpoint of analysis situs, either to a two-dimensional euclidean space or to an everywhere dense subset thereof.

Theorem B. \ddagger Every two-dimensional space that satisfies Hilbert's plane axioms of Groups I, II and III (or Veblen's I-VIII, XII) together with Desargues' theorem and Axiom A is descriptively equivalent either to a two-dimensional euclidean space or an everywhere dense subset thereof.

Corollary. Pascal's theorem§ is a consequence of Hilbert's plane axioms of Groups I, II and III together with Desargues' theorem and Axiom A.

The University of Pennsylvania.

A TYPE OF SINGULAR POINTS FOR A TRANSFORMATION OF THREE VARIABLES.

by DR. W. v. Lovitt.

(Read before the American Mathematical Society, December 31, 1915.)
In the Transactions for October, 1915, I discussed some singularities of a point transformation in three variables
(1) $\quad x=\phi(u, v, w), \quad y=\psi(u, v, w), \quad z=\chi(u, v, w)$

[^0]
[^0]: * The statement that such a correspondence preserves limits signifies that if A is a point of S, M is a point set of S, and A^{\prime} and M^{\prime} respectively are the corresponding point and point set of S^{\prime} then P is a limit point of M if, and only if, P^{\prime} is a limit point of M^{\prime}. Here P is said to be a limit point of M if, and only if, every triangle of S that contains P within it contains within it at least one point of M distinct from P.
 \dagger Transactions of the American Mathematical Society, vol. 16 (1915), pp. 27-32.
 \ddagger For a corresponding theorem regarding Axiom B (cf. footnote in § 2) see Vahlen, loc. cit., pp. 158-163.
 § Cf. Hilbert, loc. cit., p. 40.

