BY PROFESSOR GEORGE D. BIRKHOFF.
(Read before the American Mathematical Society, April 24, 1915.)
Let there be given an algebraic equation of the nth degree written

$$
x^{n}+C_{n, 1} a_{1} x^{n-1}+C_{n, 2} a_{2} x^{n-2}+\cdots+a_{n}=0
$$

where $C_{n, 1}, C_{n, 2}, \cdots$ denote binomial coefficients. Let x_{1}, x_{2}, \cdots, x_{n} denote its roots, and X the greatest absolute value of any of these roots.
From the equations which express the coefficients in terms of the roots

$$
C_{n, k} a_{k}=(-1)^{k} \Sigma x_{1} x_{2} \cdots x_{k} \quad(k=1,2, \cdots n)
$$

we infer at once that

$$
\left|a_{k}\right| \leqq X^{k} .
$$

In fact there are precisely $C_{n, k}$ terms on the right-hand side of the k th equation, each of which is not greater than X^{k}.
Hence, if α stands for the greatest of the quantities

$$
\left|a_{1}\right|,\left|a_{2}\right|^{1 / 2}, \cdots,\left|a_{n}\right|^{1 / n},
$$

it is clear that we have $X \geqq \alpha$.
Also from the given algebraic equation we obtain directly

$$
|x|^{n} \leqq C_{n, 1}\left|a_{1}\right||x|^{n-1}+\cdots+\left|a_{n}\right|,
$$

where x represents any of the quantities $x_{1}, x_{2}, \cdots, x_{n}$. Replacing $|x|$ by one of its possible values X, and each quantity $\left|a_{k}\right|$ by the quantity α^{k}, at least as great, we obtain

$$
|X|^{n} \leqq C_{n, 1} \alpha|X|^{n-1}+\cdots+\alpha^{n},
$$

which may be written

$$
X^{n} \leqq(X+\alpha)^{n}-X^{n} .
$$

