$$
\begin{gathered}
\xi_{2}= \pm \frac{1}{2}\left\{-2 \frac{\left(\frac{\partial g}{\partial \xi}\right)_{0}}{g_{0}}\right\} h^{2}+\epsilon \\
\xi_{1}= \pm \frac{1}{2}\left\{-\frac{1}{3 g_{0}}\left[\left(\frac{\partial g}{\partial \xi}\right)_{0}+4 \omega^{2} \sin \phi_{0} \cos \phi_{0}\right]\right\} h^{2}+\epsilon^{\prime}
\end{gathered}
$$

where ϵ and ϵ^{\prime} are infinitesimals of order higher than that of h^{2}. In order to remove the ambiguity in sign let us observe that since the latitute ϕ lies between -90° and $+90^{\circ}$, it follows that $\cos \phi>0$, and therefore, by relation (40), $(\partial j / \partial s) / j$ and $d^{2} y / d x^{2}$ are either both positive or both negative. Hence it follows from (45) and Theorem 8 that for the curve d, - $(\partial g / \partial \xi)_{0} / g_{0}$ and $\left(d^{2} z / d \tau^{2}\right)_{0}$ are either both positive or both negative; and from (50) and Theorem 9 that for the curve c^{\prime}, $-1 / g_{0}\left\{(\partial g / \partial \xi)_{0}+2 \omega^{2} \sin 2 \phi_{0}\right\}$ and $\left(d^{2} z / d \tau^{2}\right)_{0}$ are either both positive or both negative. Furthermore, we assumed ξ_{1} and ξ_{2} to be positive toward the equator. Consequently if for definiteness we suppose (as shown in Fig. 5) that for curve d, $\left(d^{2} z / d \tau^{2}\right)_{0}>0$ and for curve $c^{\prime},\left(d^{2} z / d \tau^{2}\right)_{0}<0$, it follows that $\xi_{2}=-P_{1} T<0$ and $\xi_{1}=T C^{\prime}>0$. Therefore in the above expressions for ξ_{2} and ξ_{1} the lower signs must be used and thus we have

$$
\begin{gather*}
\xi_{2}=\frac{\left(\frac{\partial g}{\partial \xi}\right)_{0}}{g_{0}} h^{2} \tag{52}\\
\xi_{1}=\left\{2 \omega^{2} \sin 2 \phi_{0}+\left(\frac{\partial g}{\partial \xi}\right)_{0}\right\} \frac{h^{2}}{6 g_{0}} \tag{53}
\end{gather*}
$$

to terms of order not higher than the second in h, whence

$$
\begin{equation*}
\text { S.D. }=\xi_{1}-\xi_{2}=\left\{2 \omega^{2} \sin 2 \phi_{0}-5\left(\frac{\partial g}{\partial \xi}\right)_{0}\right\} \frac{h^{2}}{6 g_{0}} \tag{54}
\end{equation*}
$$

which is formula (I).

NOTE ON SOLVABLE QUINTICS.

```
BY PROFESSOR F. N. COLE.
```

(Read before the American Mathematical Society, January 2, 1915.)
The substance of the following paper was included several years ago in my university lecture course on the theory of

