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and making a set of five assumptions. It appears that the
most general solution, when n is greater than 2, is ¢ f"p(2),
where the integer r is prime to n. The case n = 2 is discussed
separately and a simple algorism is given for reducing all
differentiable functions of order 2 to a single type.
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THE Legendre, or second necessary, condition for a mini-
mum of a double integral, where there is no isoperimetric
condition, has been derived by Kobb,* where the equations
of the surfaces involved are in parametric form, and by
Mason,t where « and y are the independent variables. The
analogous condition for the isoperimetric problem has been
proved to be sufficient to insure a permanent sign to the
second variation,] but it has not been proved to be necessary.

In the present paper this condition,
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is proved to be necessary for either a maximum or a minimum.
Given two functions f(z, y, 2, p, ¢) and g(z, y, 2, P, ¢) and a
surface
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