1915.] THE CONVERSE OF HEINE-BOREL THEOREM.

see that d = 0. Thus $(c_{14} + c_{24})I_1 = 0$. Apply $x_2 = x'_2 + x'_1$, whence

179

$$c'_{13} = c_{13} + c_{23}, \quad c'_{14} = c_{14} + c_{24}, \quad b'_{1} = b_{1} + b_{2} + c_{12}.$$

Then $c_{14}I_1 = 0$. Hence every $c_{ij}I_1 = 0$, $I_1 = lA_4$. But I_1 is free of A_4 . Hence $I_1 = 0$, I = 0, S = 0.

THEOREM. Every linear covariant of q_4 is a linear function of L, A_4L , KL.

Next, let $\omega > 1$. After subtracting from C a constant multiple of $q_4L^{\omega-2}$, whose leader is b_4u , we have d = 0 in S. Express S_1 as a polynomial in c_{12} , c_{13} , b_1 , and call p the coefficient of their product. The coefficient of $c_{12}c_{13}$ in $S'_1 - S_1 = S$, found from (1), is $p(b_4 + c_{14})$, and hence vanishes if $b_4 = c_{14}$; while S itself vanishes if also $c_{24} = c_{34} = 0$. Applying these two conditions to $S = I + b_4I_1$, we find that

$$S = (b_4 + 1)k(n + mK),$$
 n, m constants.

Several tests failed to exclude this leader. Whether or not there are covariants with such a leader S is not discussed here. In this connection, note the covariant

 $\Sigma c_{ij}(x_i x_i^{2r} + x_i^{2r} x_j)$ $(i, j = 1, \dots, 4; i < j),$

obtained by replacing the variables in the polar of (x) with respect to q_4 by $x_k^{2^r}$ $(k = 1, \dots, 4)$.

6. By means of the corollary in § 4, and transformation (1), we readily obtain the

THEOREM. Every quadratic covariant of q_4 is a linear function of L^2 , KL^2 , Iq_4 , where I is an invariant.

UNIVERSITY OF CHICAGO, June, 1914.

THE CONVERSE OF THE HEINE-BOREL THEOREM IN A RIESZ DOMAIN.

BY DR. E. W. CHITTENDEN.

(Read before the American Mathematical Society, April 11, 1914.)

In various generalized forms of the Heine-Borel theorem*

^{*} Cf. M. Fréchet, "Sur quelques points du calcul fonctionnel," Rendiconti del Circolo Matematico di Palermo, vol. 22 (1906), p. 26; and T. H. Hildebrandt, "A contribution to the foundations of Fréchet's calcul fonctionnel," Amer. Jour. of Mathematics, vol. 34 (1912), p. 282.