see that $d=0$. Thus $\left(c_{14}+c_{24}\right) I_{1}=0 . \quad$ Apply $x_{2}=x_{2}^{\prime}+x_{1}^{\prime}$, whence

$$
c_{13}^{\prime}=c_{13}+c_{23}, \quad c_{14}^{\prime}=c_{14}+c_{24}, \quad b_{1}^{\prime}=b_{1}+b_{2}+c_{12}
$$

Then $c_{14} I_{1}=0$. Hence every $c_{i j} I_{1}=0, I_{1}=l A_{4}$. But I_{1} is free of A_{4}. Hence $I_{1}=0, I=0, S=0$.

Theorem. Every linear covariant of q_{4} is a linear function of $L, A_{4} L, K L$.

Next, let $\omega>1$. After subtracting from C a constant multiple of $q_{4} L^{\omega-2}$, whose leader is $b_{4} u$, we have $d=0$ in S. Express S_{1} as a polynomial in c_{12}, c_{13}, b_{1}, and call p the coefficient of their product. The coefficient of $c_{12} c_{13}$ in $S_{1}^{\prime}-S_{1}=S$, found from (1), is $p\left(b_{4}+c_{14}\right)$, and hence vanishes if $b_{4}=c_{14}$; while S itself vanishes if also $c_{24}=c_{34}=0$. Applying these two conditions to $S=I+b_{4} I_{1}$, we find that

$$
S=\left(b_{4}+1\right) k(n+m K), \quad n, m \text { constants. }
$$

Several tests failed to exclude this leader. Whether or not there are covariants with such a leader S is not discussed here.

In this connection, note the covariant

$$
\Sigma c_{i j}\left(x_{i} x_{j}^{2 r}+x_{i}^{2 r} x_{j}\right) \quad(i, j=1, \cdots, 4 ; i<j),
$$

obtained by replacing the variables in the polar of (x) with respect to q_{4} by $x_{k}^{2^{r}}(k=1, \cdots, 4)$.
6. By means of the corollary in $\S 4$, and transformation (1), we readily obtain the

Theorem. Every quadratic covariant of q_{4} is a linear function of $L^{2}, K L^{2}, I q_{4}$, where I is an invariant.

University of Chicago, June, 1914.

THE CONVERSE OF THE HEINE-BOREL THEOREM IN A RIESZ DOMAIN.

BY DR. E. W. CHITTENDEN.
(Read before the American Mathematical Society, April 11, 1914.)
In various generalized forms of the Heine-Borel theorem*

[^0]
[^0]: * Cf. M. Fréchet, "Sur quelques points du calcul fonctionnel," Rendiconti del Circolo Matematico di Palermo, vol. 22 (1906), p. 26; and T. H. Hildebrandt, "A contribution to the foundations of Fréchet's calcul fonctionnel," Amer. Jour. of Mathematics, vol. 34 (1912), p. 282.

