for the extremal QP at its intersection with k_2 . Let $J_{QP} = S(v)$; then

$$J_{64} = S(v_4), \quad J_{c_0} = J_{12} = S(v_2),$$

$$J_{64} - J_{c_0} = -[S(v_2) - S(v_4)] = -\int_{v_4}^{v_2} \frac{dS}{dv} dv$$
$$= -\int_{v_4}^{v_2} [x_2' H_{x'} + y_2' H_{y'}] dv,$$

and we have for the total variation

$$\Delta J = J_{\bar{c}} - J_{c_0} = \int_{\tau_3}^{\tau_4} E d\tau - \int_{v_4}^{v_2} [x_2' H_{x'} + y_2' H_{y'}] dv.$$

At the point 2, C_0 cuts k_2 transversally, that is,

$$x_2'(v)H_{x'} + y_2'(v)H_{y'}|^2 = 0$$
,

and in this problem, as in the simple problem of the calculus of variations, we are led to a study of the sign of E along the extremal C_0 when considering sufficient conditions.

University of Illinois, *March*, 1913.

A NOTE ON GRAPHICAL INTEGRATION OF A FUNCTION OF A COMPLEX VARIABLE.

BY DR. S. D. KILLAM.

(Read before the American Mathematical Society, April 26, 1913.)

THE object of this paper is to give a shorter and purely graphical method for graphical integration than that of the author in his thesis* on graphical integration of functions of a complex variable.

We can represent a function f(z) of the complex variable $z=re^{i\theta}$ in the f(z)-plane by a system of orthogonal curves $r=r_n$ $(n=0,1,\cdots,n)$ and $\theta=\theta_n$ $(n=0,1,\cdots,n)$. We choose the values r_n and θ_n so that the f(z) plane is covered by a net of small squares. We seek now a graphical representation in the Z=X+iY-plane of the function $Z=\int_0^{z_n}f(z)dz$,

^{* &}quot;Über graphische Integration von Funktionen einer complexen Variabeln mit speziellen Anwendungen," Dissertation, Göttingen, 1912. Referred to in this paper as "thesis."