for the extremal $Q P$ at its intersection with k_{2}. Let $J_{Q P}=S(v)$; then

$$
\begin{aligned}
J_{64}=S\left(v_{4}\right), \quad J_{c_{0}} & =J_{12}=S\left(v_{2}\right), \\
J_{64}-J_{c_{0}}=-\left[S\left(v_{2}\right)-S\left(v_{4}\right)\right]= & -\int_{v_{4}}^{v_{2}} \frac{d S}{d v} d v \\
& =-\int_{v_{4}}^{v_{2}}\left[x_{2}^{\prime} H_{x^{\prime}}+y_{2}^{\prime} H_{\left.y^{\prime}\right]}\right] d v,
\end{aligned}
$$

and we have for the total variation

$$
\Delta J=J_{\bar{c}}-J_{c_{0}}=\int_{\tau_{3}}^{\tau_{4}} E d \tau-\int_{v_{4}}^{v_{2}}\left[x_{2}^{\prime} H_{x^{\prime}}+y_{2}^{\prime} H_{y^{\prime}}\right] d v .
$$

At the point $2, C_{0}$ cuts k_{2} transversally, that is,

$$
x_{2}^{\prime}(v) H_{x^{\prime}}+\left.y_{2}^{\prime}(v) H_{y^{\prime}}\right|^{2}=0,
$$

and in this problem, as in the simple problem of the calculus of variations, we are led to a study of the sign of E along the extremal C_{0} when considering sufficient conditions.

University of Illinois,
March, 1913.

A NOTE ON GRAPHICAL INTEGRATION OF A FUNCTION OF A COMPLEX VARIABLE.

BY DR. S. D. KILLAM.

(Read before the American Mathematical Society, April 26, 1913.)
The object of this paper is to give a shorter and purely graphical method for graphical integration than that of the author in his thesis* on graphical integration of functions of a complex variable.
We can represent a function $f(z)$ of the complex variable $z=r e^{i \theta}$ in the $f(z)$-plane by a system of orthogonal curves $r=r_{n}(n=0,1, \cdots, n)$ and $\theta=\theta_{n}(n=0,1, \cdots, n)$. We choose the values r_{n} and θ_{n} so that the $f(z)$ plane is covered by a net of small squares. We seek now a graphical representation in the $Z=X+i Y$-plane of the function $Z=\int_{0}^{z_{n}} f(z) d z$,

[^0]
[^0]: * " Über graphische Integration von Funktionen einer complexen Variabeln mit speziellen Anwendungen," Dissertation, Göttingen, 1912. Referred to in this paper as "thesis."

