54. The varieties of self-projective quartic and quintic curves have been tabulated for the general case by Ciani and Snyder respectively. Dr. Winger in his paper presents the projectively distinct types of the most general rational curves of these orders which are invariant under the different finite collineation groups. The quartics are readily obtained from the consideration of the Stahl binary sextic. Six types are found with characteristic groups of orders $2,3,4,4,6$ and 24, the first three being cyclic, besides one with an infinite group.

Of the quintics, two admit a one-parameter group. The others belong to cyclic groups of orders $2,3,4,5$ (two txpes), and dihedral groups of orders 4, 6, and 10 (two types),-eleven in all.

F. N. Cole, Secretary.

THE PRODUCT OF TWO OR MORE GROUPS.

BY PROFESSOR G. A. MILLER.
(Read before the American Mathematical Society, December 31, 1912.)

§ 1. Introduction.

If H_{1} and H_{2} are any two groups, the symbol $H_{1} \cdot H_{2}$ denotes the totality of the products obtained by multiplying each operator of H_{1} on the right by every operator of H_{2}. A necessary and sufficient condition that this totality constitutes a group is that $H_{1} \cdot H_{2} \equiv H_{2} \cdot H_{1}$. As $H_{1} \cdot H_{2}$ is always composed of the inverses of all the operators represented by $H_{2} \cdot H_{1}$, irrespective of whether this product is a group or does not have this property, we may also say that a necessary and sufficient condition that $H_{1} \cdot H_{2}$ is a group is that it includes the inverse of each one of its operators.

Suppose that H_{1} and H_{2} have exactly h_{0} operators in common. These common operators constitute a subgroup H_{0}, which is known as the cross-cut of H_{1} and H_{2}. It is easy to prove that the number of the distinct operators in $H_{1} \cdot H_{2}$ is always $h_{1} h_{2} / h_{0}$, where h_{1} and h_{2} represent the orders of H_{1} and H_{2} respectively. To see that $H_{1} \cdot H_{2}$ cannot involve more than this number of distinct operators, it is only neces-

