where the large letters are the cofactors of the corresponding small letters in Δ_{n}. It will be noticed that each member of (6) is of degree $3 n$, as it should be.

University of Washington, March, 1911.

NOTE ON THE MAXIMAL CYCLIC SUBGROUPS OF A GROUP OF ORDER p^{m}.

by professor g. a. miller.
(Read before the San Francisco Section of the American Mathematical Society, October 28, 1911.)

If H is any non-invariant subgroup of a group G of order p^{m}, p being any prime number, it is well known that H is transformed into itself by at least one of its conjugates under G and hence by operators which are not contained in H.* If H is cyclic and not contained in a larger cyclic subgroup of G, it is said to be a maximal cyclic subgroup of G. In what follows we shall establish the

Theorem: A necessary and sufficient condition that every maximal cyclic subgroup of order p^{a} in a group G of order $p^{m}, m>3$, is transformed into itself by no more than p^{a+1} operators of G is that G contains one and only one cyclic subgroup of order p^{m-1}.

If we combine with this theorem some well-known properties of the groups of order p^{m} which contain operators of order p^{m-1}, it results that there are only three non-cyclic groups of order p^{m} which have the property that each of their maximal cyclic subgroups of order p^{a} is transformed into itself by only p^{a+1} operators of the group. These three groups are the three non-cyclic groups of order 2^{m} which involve one and only one cyclic subgroup of order 2^{m-1}.

To prove the theorem in question, we shall assume that G does not involve any operator of order p^{m-1}, since the groups of order p^{m} which contain operators of order p^{m-1} are so well known. We shall also assume in what follows that G satisfies the condition that each one of its maximal cyclic subgroups of order p^{a} is transformed into itself by exactly p^{a+1} operators of G, p^{a} being the order of any one of the maximal cyclic subgroup of G.

[^0]
[^0]: * Cf. American Journal of Mathematics, vol. 23 (1901), p. 173.

