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If the constants apq are chosen so that the determinants An 
are all positive, Z)n-2(X) and Z)n(X) will have opposite signs 
when Dn_i(X) vanishes, and so the functions 

D(X), A(X), D2(X), •-, Dn(\) 

will form a Sturmian sequence. 
It has been stated that the roots of the functions VW(X) in the 

Sturmian sequence separate one another. This is not always 
true for a Sturmian sequence when the functions are not poly­
nomials, but it can be shown to be true in the present case, 
as follows. Let gn($), gn(t) be the cofactors of the constituents 
fn(t), fn(s) in the determinant Fn; then from the properties of 
determinants 

Fn-i • An — gn(s)gn(t) = Fn • A«_i. 
Dividing out by An_iAw, we have 

hn($, t) = hn„i(s, t) - ———. 
/±n-~l&n 

We can now apply the theorem mentioned before to this equation 
and deduce that the roots of An_i(s, t) are separated by those 
of hn(s, t), there being one root of hn(s, t) between each consecu­
tive pair of roots of hn~i($, t). 
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WHILE the square of a determinant of any order may be 
readily expressed as a determinant of the same order, I am not 
aware of the existence of a correspondingly simple method by 
means of which the cube of any determinant may be expressed 
in determinant form. For a determinant of the fourth order, 
A4, we have indeed from a well-known property of determinants 

A43 s A4', 

where A4' is the determinant whose constituents are the co-


