equations (2) it follows that

where the arguments of the derivatives $\partial f_i/\partial x_1$ have the form $x + \theta_i' \Delta x; y + \Delta y$. Hence as Δx_1 approaches zero the quotients $\Delta y_i/\Delta x_1$ approach limits $\partial y_i/\partial x_1$ which satisfy the equations

(3)

$$\frac{\partial f_1}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial f_1}{\partial y_2} \frac{\partial y_2}{\partial x_1} + \dots + \frac{\partial f_1}{\partial y_n} \frac{\partial y_n}{\partial x_1} + \frac{\partial f_1}{\partial x_1} = 0,$$

$$\frac{\partial f_n}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial f_n}{\partial y_2} \frac{\partial y_2}{\partial x_1} + \dots + \frac{\partial f_n}{\partial y_n} \frac{\partial y_n}{\partial x_1} + \frac{\partial f_n}{\partial x_1} = 0,$$

where the arguments of the derivatives of f are now (x; y). A similar consideration shows the existence of the first derivatives with respect to the variables x_2, x_3, \dots, x_m . The existence of the higher derivatives follows from the observation that the solutions of equations (3) are differentiable n-1times with respect to the variables x on account of the assumption that the functions f are differentiable n times.

ON A SET OF KERNELS WHOSE DETERMINANTS FORM A STURMIAN SEQUENCE.

BY MR. H. BATEMAN, M.A.

Weyl * has recently given a theorem which states that if a kernel

$$k_n(s, t) = \sum_{p, q=1}^n k_{pq} \Phi_p(s) \Phi_q(t) \qquad (k_{pq} = k_{qp})$$

is formed from n functions $\Phi_p(s)$ whose squares are integrable in the interval (0, 1), then the smallest positive root of the

1912.]

^{*} Göttinger Nachrichten, 1911, Heft 2, p. 110.