equations (2) it follows that

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial y_{1}} \frac{\Delta y_{1}}{\Delta x_{1}}+\frac{\partial f_{1}}{\partial y_{2}} \frac{\Delta y_{2}}{\Delta x_{1}}+\cdots+\frac{\partial f_{1}}{\partial y_{n}} \frac{\Delta y_{n}}{\Delta x_{1}}+\frac{\partial f_{1}}{\partial x_{1}}=0 \\
& \cdot \\
& \frac{\partial f_{n}}{\partial y_{1}} \frac{\Delta y_{1}}{\Delta x_{1}}+\frac{\partial f_{n}}{\partial y_{2}} \frac{\Delta y_{2}}{\Delta x_{1}}+\cdots+\frac{\partial f_{n}}{\partial y_{n}} \frac{\Delta y_{n}}{\Delta x_{1}}+\frac{\partial f_{n}}{\partial x_{1}}=0
\end{aligned}
$$

where the arguments of the derivatives $\partial f_{i} / \partial x_{1}$ have the form $x+\theta_{i}{ }^{\prime} \Delta x ; y+\Delta y$. Hence as Δx_{1} approaches zero the quotients $\Delta y_{i} / \Delta x_{1}$ approach limits $\partial y_{i} / \partial x_{1}$ which satisfy the equations

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{1}}+\frac{\partial f_{1}}{\partial y_{2}} \frac{\partial y_{2}}{\partial x_{1}}+\cdots+\frac{\partial f_{1}}{\partial y_{n}} \frac{\partial y_{n}}{\partial x_{1}}+\frac{\partial f_{1}}{\partial x_{1}}=0 \tag{3}
\end{equation*}
$$

$$
\frac{\partial f_{n}}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{1}}+\frac{\partial f_{n}}{\partial y_{2}} \frac{\partial y_{2}}{\partial x_{1}}+\cdots+\frac{\partial f_{n}}{\partial y_{n}} \frac{\partial y_{n}}{\partial x_{1}}+\frac{\partial f_{n}}{\partial x_{1}}=0
$$

where the arguments of the derivatives of f are now $(x ; y)$. A similar consideration shows the existence of the first derivatives with respect to the variables $x_{2}, x_{3}, \cdots, x_{m}$. The existence of the higher derivatives follows from the observation that the solutions of equations (3) are differentiable $n-1$ times with respect to the variables x on account of the assumption that the functions f are differentiable n times.

ON A SET OF KERNELS WHOSE DETERMINANTS FORM A STURMIAN SEQUENCE.

by Mr. H. Bateman, M.A.
Weyl * has recently given a theorem which states that if a kernel

$$
k_{n}(s, t)=\sum_{p, i q=1}^{n} k_{p q} \Phi_{p}(s) \Phi_{q}(t) \quad\left(k_{p q}=k_{q p}\right)
$$

is formed from n functions $\Phi_{p}(s)$ whose squares are integrable in the interval $(0,1)$, then the smallest positive root of the

[^0]
[^0]: *Göttinger Nachrichten, 1911, Heft 2, p. 110.

