The object of the present note is to show clearly that G may be regarded as a generalization of the dihedral group which includes the earlier generalization obtained by considering the groups generated by two operators which have a common square.* If two operators have a common square, this square is clearly invariant under the group generated by these operators; but if the squares are invariant under this group they evidently are not necessarily the same. From this it follows directly that the present generalization includes the earlier one, and it gives rise to an almost equally elementary category of groups as a result of the equations established in the preceding paragraph. If two operators have a common square, it is known that the product of either one into the inverse of the other is transformed into its inverse by each of the operators. The analogous theorem as regards the operators under consideration may be expressed as follows:

When each of two operators is commutative with the square of the other, the product of one into the inverse of the other is transformed by each of the two operators into its inverse multiplied by an invariant operator under the group generated by the two operators.

University of Illinois.

THE SOLUTION OF THE EQUATION IN TWO REAL Variables at a Point WHERE BOTH THE PARTIAL DERIVATIVES VANISH.

BY DR. L. S. DEDERICK.

(Read before the American Mathematical Society, September 14, 1909.)
If $F(x, y)$ is a real function of the real variables x and y which is continuous at and near the point $\left(x_{0}, y_{0}\right)$, and vanishes at this point, but has one first order partial derivative at the point not equal to zero, there are a number of well-known theorems about the existence of other values of x and y satisfying the equation

$$
\begin{equation*}
F(x, y)=0 \tag{1}
\end{equation*}
$$

[^0]
[^0]: * Archiv der Mathematik und Physik, vol. 9 (1905), p. 6.

