point not contained in the simplex $S(i+1)$ that determines it. But that one point is a point of the simplex $S(m+1)$ by the very definition of simplex. Therefore, if one begins to count with the first set and counts through the sets in order, the number of points in the set numbered $i+1$ that have not been counted in any previous set is ${ }_{m+1} C_{i+1}$. It follows that the number of points in the simplex $S(m+1)$ is

$$
\sum_{j=1}^{m}{ }_{m+1} C_{j}=2^{m+1}-2
$$

which is one less than the number of points in the m-space determined by the $m+1$ vertices of the simplex.

From this theorem it follows that the $l+1$ vertices of a simplex of order l determine uniquely another point, namely, the one point of the l-space determined by the simplex that is not also a point of the simplex. It is convenient to call this point the point complementary to the simplex. The triads, tetrads, pentads, etc. of the Steiner problem are found as follows: Every simplex $S(2)$ determines a triad consisting of its two vertices and the complementary point; every simplex $S(3)$ determines a tetrad consisting of its three vertices and the complementary point ; and, in general, every simplex $S(l-1)$, $l \leqq k+2$, determines an l-ad consisting of the $l-1$ vertices and the complementary point. There are no $l-a d s$ for $l>k+2$.

When $n=2^{6}-1=63$, it is possible to arrange the n elements in triads, tetrads, pentads, hexads, and heptads. There is no arrangement of the 63 elements in l-ads for $l>7$. This special case was involved in Steiner's investigation of the configuration of the 28 double tangents of a quartic curve * and led him to propose for solution the "Combinatorische Aufgabe" which I have called " The tactical problem of Steiner."

ON THE SO-CALLED GYROSTATIC EFFECT.

BY PROFESSOR ALEXANDER S. CHESSIN.
(Read before the American Mathematical Society, April 24, 1909.)
In computing the resisting couple of gyrostats or the so-called " gyrostatic effect" it is customary to assume that it is equal to $C \lambda \omega \sin \theta$, where C, λ, ω and θ denote respectively the moment of inertia of the gyrostat about its geometrical axis, the angular

[^0]
[^0]: * Journal für die reine und angewandte Mathematik, vol. 49, pp. 265-272.

