of orthogonal functions, leads, if applied to the case $f=g$ to Bessel's identity
(6) $\int_{R}\left[f-\sum_{p=1}^{n} \phi_{p} \int_{R} f \phi_{p} d R\right]^{2} d R=\int_{R} f^{2} d R-\sum_{p=1}^{n}\left[\int_{R} f \phi_{p} d R\right]^{2}$,
from which Bessel's inequality immediately follows.
5 . Theorems analogous to those of the present note involving finite sums or infinite series in place of integrals may be proved in a similar manner.

Göttingen,
June, 1909.

ON THE TACTICAL PROBLEM OF STEINER.

BY PROFESSOR W. H. BUSSEY.

(Read before the American Mathematical Society, February 24, 1906.)
The study of tactical configurations known as triple systems had its origin in two problems proposed independently by J. Steiner * and T. P. Kirkman. \dagger The Steiner problem, which is the more general and includes the other, is as follows:

For what values of n is it possible to arrange n elements in sets of three, called triads, so that every set of two elements is contained in one and only one triad? If n is a number for which there is such an arrangement in triads, are there other arrangements that cannot be obtained from it by a mere permutation of the elements? When such an arrangement in triads has been made, is it possible to arrange the n elements in sets of four, called tetrads, so that no triad is contained in a tetrad and so that every set of three that is not a triad is contained in one and only one tetrad ? When such an arrangement in tetrads has been made, is it possible to arrange the n elements in sets of five, called pentads, so that no triad or tetrad is contained in a pentad, and so that every set of four that is not a tetrad and does not contain a triad is contained in one and only one pentad? In general, when an arrangement in k - $\alpha d s$ has been made, is it possible to arrange the n elements in sets of $k+1$, called $(k+1)$-ads so that no $l-a d(l \leqq k)$ is contained in a $(k+1)-a d$, and so that every set of k elements that is not a

[^0]
[^0]: * Journal für die reine und angewandte Mathematik, vol. 45, p. 181.
 \dagger The Lady's and Gentleman's Diary for 1850. For other references to the literature of Kirkman's fifteen school girls problem see Ball's Mathematical Recreations and Essays, 4th edition, page 121.

