The norm of the number on the left is found to be p. It seems impracticable to determine whether or not p has actual prime factors in the field of 128 th roots of 1 , but this is very improbable, as the class number in that field is a multiple of 21,121.*

The use of complex numbers appears to be of no assistance in the problem of determining whether F_{n} is prime or composite.

AN EXTENSION OF CERTAIN INTEGRABILITY CONDITIONS.

by Professor J. EDMUND Wright.
Suppose there are n functions $a_{1}, a_{2}, \cdots, a_{n}$ of n independent variables $x_{1}, x_{2}, \cdots, x_{n}$, satisfying the conditions

$$
\frac{\partial \alpha_{p}}{\partial x_{q}}-\frac{\partial a_{q}}{\partial x_{p}}=0
$$

for all values of p and q. It is well known that the functions a must all be first derivatives of a single function V. Similarly, if there are $\frac{1}{2} n(n+1)$ functions $a_{p^{n}}$ such that $a_{p^{n}}=a_{q p}$, satisfying the relations

$$
\frac{\partial a_{p q}}{\partial x_{r}}=\frac{\partial a_{p r}}{\partial x_{q}}
$$

for all values of p, q, r, then the α 's must be second derivatives of a single function.

The following question arises in connection with an application of the theory of invariants of quadratic differential forms :

Suppose there are $n(n+1)$ functions $H_{p q}, K_{p q}$ such that $H_{p q}=H_{q p}, K_{p q}=K_{q p}$, satisfying the conditions

$$
\frac{\partial}{\partial x_{r}}\left(H_{p q}\right)+K_{p q} \frac{\partial Y}{\partial x_{r}}=\frac{\partial}{\partial x_{p}}\left(H_{q r}\right)+K_{q r} \frac{\partial Y}{\partial x_{p}}
$$

for all values of $p, q, r ; Y$ being a given function of the variables ; what are the conditions on the functions H, K ?

We first consider the case of $2 n$ functions $a_{1}, a_{2}, \cdots, a_{n} ; b_{1}$, b_{2}, \cdots, b_{n}, satisfying the conditions

[^0]
[^0]: * Reuschle, Tafeln, p. 461.

