The norm of the number on the left is found to be p. It seems impracticable to determine whether or not p has actual prime factors in the field of 128th roots of 1, but this is very improbable, as the class number in that field is a multiple of 21,121.*

The use of complex numbers appears to be of no assistance in the problem of determining whether F_n is prime or composite.

AN EXTENSION OF CERTAIN INTEGRABILITY CONDITIONS.

BY PROFESSOR J. EDMUND WRIGHT.

SUPPOSE there are n functions a_1, a_2, \dots, a_n of n independent variables x_1, x_2, \dots, x_n , satisfying the conditions

$$\frac{\partial a_{p}}{\partial x_{q}} - \frac{\partial a_{q}}{\partial x_{p}} = 0$$

for all values of p and q. It is well known that the functions a must all be first derivatives of a single function V. Similarly, if there are $\frac{1}{2}n(n+1)$ functions $a_{p^{n}}$ such that $a_{p^{n}} = a_{qp}$, satisfying the relations

$$\frac{\partial a_{pq}}{\partial x_r} = \frac{\partial a_{pr}}{\partial x_q}$$

for all values of p, q, r, then the *a*'s must be second derivatives of a single function.

The following question arises in connection with an application of the theory of invariants of quadratic differential forms :

Suppose there are n(n+1) functions H_{pq} , K_{pq} such that $H_{pq} = H_{qp}$, $K_{pq} = K_{qp}$, satisfying the conditions

$$\frac{\partial}{\partial x_{r}}(H_{pq}) + K_{pq}\frac{\partial Y}{\partial x_{r}} = \frac{\partial}{\partial x_{p}}(H_{qr}) + K_{qr}\frac{\partial Y}{\partial x_{p}},$$

for all values of p, q, r; Y being a given function of the variables; what are the conditions on the functions H, K?

We first consider the case of 2n functions a_1, a_2, \dots, a_n ; b_1, b_2, \dots, b_n , satisfying the conditions

6

^{*} Reuschle, Tafeln, p. 461.