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TaE following treatment of the problem of inference in the
logic of classes possesses some interest from its analogy to gen-
eral solutions in ordinary algebra. The character of the gen-
eral solutions here considered is most simply illustrated by
what may be called the generalized problem of the syllogism,
which may be stated as follows :

Let @, y, 2 be three class symbols, and let

f1i&9) =0, f(y,2)=0,

be any two propositions involving «, y and ¥, z respectively ;
then it is required to deduce a proposition

f3(£13, Z) =0
involving % and z but not y.

The most general forms of the above propositions are (writ-
ing o for 1 — w, etc.)

(1) fl(w’ y) = llmy + lzwy’ + ls‘%'ly + lg}'y' =0,
(2) f 2(% z) =myz+ mzyz'—}— msy,z + m4y'z’ =0,
(3) =f3(w’ Z) = N,x2 + 7’1/2(1}2’ + nsw/z + 'ﬂéI)/ZI = O,

in which 7, m, n are numerical coefficients; and the non-vanish-
ing of any coefficient (as"m,) implies the vanishing of the corre-
sponding class term (yz). The problem is to express the
coefficients in (3) in terms of those in (1) and (2).

A solution is obtained in simple and symmetrical form by
regarding (1), (2), and (3) as particular cases of the most general
proposition involving z, y, z,

@) f(x, y, 2) = axyz + by’ + cay'’z + dwy’? + ex'yz +
JEye + gu'y'z + ha'y'? = 0.
By Boole’s rule of elimination

fl(wa ?/) =f(m) Y, l)f(w: Y, O)’



