shall be irreducible in a domain R are that $(c_1^2 - 4c_2 + 8)^{\frac{1}{2}}$ be irrational, and that either $l = [(1 + \frac{1}{2}c_2)^2 - c_1^2]^{\frac{1}{2}}$ be irrational or else l rational and $[\frac{1}{2}c_2^2 - c_1^2 - 2 \pm (c_2 - 2)l]^{\frac{1}{2}}$ both irrational.

11. The only linear fractional transformations which replace a reciprocal equation by a reciprocal equation are

(11)
$$x' = \pm \frac{\alpha x + \beta}{\beta x + \alpha} \qquad (\alpha^2 \neq \beta^2).$$

Then y, given by (3), undergoes the transformation

(12)
$$y' = \pm \frac{(\alpha^2 + \beta^2)y + 4\alpha\beta}{\alpha\beta y + \alpha^2 + \beta^2}.$$

The transformation on $\frac{1}{2}y$ is the square of (11). UNIVERSITY OF CHICAGO, March, 1908.

A NEW GRAPHICAL METHOD FOR QUATERNIONS.

BY PROFESSOR JAMES BYRNIE SHAW.

(Read before the Southwestern Section of the American Mathematical Society, November 30, 1907.)

1. ANY quaternion q may be written in the form q = (w + xi) + (y + zi)j. For convenience let us represent numbers of the form w + xi (practically equivalent to ordinary complex numbers save in their products by j) by Greek characters, so that q may be written

$$q = \alpha + \beta j,$$

where for any number β we have $\beta j = j\overline{\beta}, \overline{\beta}$ being the conjugate of β .

The tensor of q is then the square root of the sum of the squares of the moduli of α , β . Also the scalar of q is $\frac{1}{2}(\alpha + \overline{\alpha})$, that is, the real part of α .

2. The product of $q = \alpha + \beta j$ and $r = \gamma + \delta j$ is

$$qr = (\alpha\gamma - \beta\bar{\delta}) + (\alpha\delta + \beta\bar{\gamma})j,$$

and also we have

$$rq = (\alpha \gamma - \beta \overline{\delta}) + (\overline{\alpha} \delta + \beta \gamma) j.$$