shall be irreducible in a domain R are that $\left(c_{1}^{2}-4 c_{2}+8\right)^{1 / 2}$ be irrational, and that either $l=\left[\left(1+\frac{1}{2} c_{2}\right)^{2}-c_{1}^{2}\right]^{1 / 2}$ be irrational or else l rational and $\left[\frac{1}{2} c_{2}^{2}-c_{1}^{2}-2 \pm\left(c_{2}-2\right) l\right]^{1 / 2}$ both irrational.
11. The only linear fractional transformations which replace a reciprocal equation by a reciprocal equation are

$$
\begin{equation*}
x^{\prime}= \pm \frac{\alpha x+\beta}{\beta x+\alpha} \quad\left(\alpha^{2} \neq \beta^{2}\right) \tag{11}
\end{equation*}
$$

Then y, given by (3), undergoes the transformation

$$
\begin{equation*}
y^{\prime}= \pm \frac{\left(\alpha^{2}+\beta^{2}\right) y+4 \alpha \beta}{\alpha \beta y+\alpha^{2}+\beta^{2}} \tag{12}
\end{equation*}
$$

The transformation on $\frac{1}{2} y$ is the square of (11).
University of Chicago,
March, 1908.

A NEW GRAPHICAL METHOD FOR QUATERNIONS.

BY PROFESSOR JAMES BYRNIE SHAW.

(Read before the Southwestern Section of the American Mathematical Society, November 30, 1907.)

1. Any quaternion q may be written in the form $q=(w+x i)+(y+z i) j$. For convenience let us represent numbers of the form $w+x i$ (practically equivalent to ordinary complex numbers save in their products by j) by Greek characters, so that q may be written

$$
q=\alpha+\beta j,
$$

where for any number β we have $\beta j=j \bar{\beta}, \bar{\beta}$ being the conjugate of β.

The tensor of q is then the square root of the sum of the squares of the moduli of α, β. Also the scalar of q is $\frac{1}{2}(\alpha+\bar{\alpha})$, that is, the real part of α.
2. The product of $q=\alpha+\beta j$ and $r=\gamma+\delta j$ is

$$
q r=(\alpha \gamma-\beta \bar{\delta})+(\alpha \delta+\beta \bar{\gamma}) j
$$

and also we have

$$
r q=(\alpha \gamma-\overline{\beta \delta})+(\bar{\alpha} \delta+\beta \gamma) j .
$$

