CRITERIA FOR THE IRREDUCIBILITY OF A RECIPROCAL EQUATION.

BY PROFESSOR L. E. DICKSON.
(Read before the Chicago Section of the American Mathematical Society, April 17, 1908.)

1. A reciprocal equation $f(x)=x^{m}+\cdots=0$ is one for which

$$
x^{m} f(1 / x) \equiv c f(x)
$$

Replacing x by $1 / x$, we see that $f \equiv c^{2} f, c= \pm 1$. Now $f(x)$ has the factor $x \pm 1$ and hence is reducible, unless m is even and $c=+1$. Further discussion may therefore be limited to equations
(1) $F(x) \equiv x^{2 n}+c_{1} x^{2 n-1}+c_{2} x^{2 n-2}+\cdots+c_{2} x^{2}+c_{1} x+1=0$
of even degree and having

$$
\begin{equation*}
x^{2 n} F(1 / x) \equiv F^{\prime}(x) \tag{2}
\end{equation*}
$$

Let R be a domain of rationality containing the c 's.
Under the substitution

$$
\begin{equation*}
x+1 / x=y \tag{3}
\end{equation*}
$$

$x^{-n} F(x)$ becomes a polynomial in y,

$$
\begin{equation*}
\phi(y)=y^{n}+k_{1} y^{n-1}+\cdots+k_{n}, \tag{4}
\end{equation*}
$$

with coefficients in R. By a suitable choice of the c 's, the k 's may be made equal to any assigned values.

We shall establish in §§ $2-7$ the following :
Theorem. Necessary and sufficient conditions for the irreducibility of $F(x)$ in the domain R are
(I) $\phi(y)$ must be irreducible in R.
(II) $F^{\prime}(x)$ must not equal a product of two distinct irreducible functions of degree n.

The second condition is discussed in §§ 8-10.
2. The irreducibility of $F(x)$ in R implies that of $\phi(y)$. For, if

