NOTE ON A CERTAIN EQUATION INVOLVING

 THE FUNCTION $E(x)$.by profissor r. D. carmicharl.

Recently J. V. Pexider has studied the equation*

$$
\begin{equation*}
E\left(\frac{n+\alpha}{x}\right)-E\left(\frac{n+\alpha}{x+1}\right)=d, \tag{1}
\end{equation*}
$$

where $E(s)$ is the greatest integer $\leqq s$, and where α is zero or a positive quantity less than $1, n$ is a known positive integer, d is zero or a known positive integer, and x is an unknown positive integer. M. Pexider confines himself chiefly to the case in which $d=0$ and x is less than n. He finds the values of x which satisfy the equation subject to these restrictions.

In the present note it is proposed to exhibit a simple working method by which the roots can be found in any case. When $d>0, x$ is always less than n, except that x may equal n when $d=1$. In what follows x is taken always less than n.

If $n+\alpha$ is divided by an integer i, giving the quotient $q+\beta$ where β is zero or a positive quantity less than 1 ; then if n is also divided by i, the quotient will evidently be $q+y$ where y is zero or a positive quantity less than 1. Hence

$$
E\left(\frac{n+\alpha}{i}\right)=E\left(\frac{n}{i}\right) .
$$

Therefore, the equation

$$
\begin{equation*}
E\left(\frac{n}{x}\right)-E\left(\frac{n}{x+1}\right)=d \tag{2}
\end{equation*}
$$

has the same roots as (1). We may then confine ourselves to the solution of the latter equation as being somewhat the simpler of the two.

Represent n in the form

$$
\begin{equation*}
n=a x+c \quad(c<x, a \neq 0) . \tag{3}
\end{equation*}
$$

[^0]
[^0]: * Rendiconti del Circolo Matem. di Palermo, vol. 24, no. 1, pp. 46-64. For convenience I write the equation in a form somewhat different from that of M. Pexider.

