1908.] ISOTHERMAL SYSTEMS IN DYNAMICS.

(35)
$$\begin{aligned} 4\rho\sigma - \rho^2 - 3\sigma^2 - 4\sigma + 2\rho - 1 &= 0, \\ (\rho - 1)(\rho - 1 - 3\sigma) &= 0, \end{aligned}$$

the coefficient of λ^2 being zero. For $\rho = 1$, $\sigma = 0$, and the algebra is a field. For $\rho = 1 + 3\sigma$, (35_1) is satisfied; then $\kappa = -\rho$. Substituting (5') in (4) and reducing by (3'), we find that the coefficients of λ^2 and λ vanish, and that the constant term is

$$-\sigma^{2}(\sigma+1)(4d^{3}+27g^{2})=0.$$

But the second factor is not zero in view of the irreducibility of (3'). For $\sigma = 0$, the algebra is a field. For $\sigma = -1$, $\rho = -2$, and we obtain the non-field algebra

(36)
$$i^2 = j$$
, $ij = ji = g - di$, $j^2 = -d^2 - 8gi + 2dj$.
The University of Chicago,
September, 1907.

ISOTHERMAL SYSTEMS IN DYNAMICS.

BY PROFESSOR EDWARD KASNER.

(Read before the American Mathematical Society, October 26, 1907.)

CONSIDER any simply infinite system of plane curves defined by its differential equation

$$(1) y' = f(x, y).$$

The ∞^2 isogonal trajectories satisfy the equation *

(2)
$$y'' = (F_x + y'F_y)(1 + y'^2),$$

where $F = \tan^{-1} f.$

The theorem of Cesàro-Scheffers states that the trajectories passing through a given point have circles of curvature forming a pencil. We inquire whether any hyperosculating circles exist.

^{*} Primes are employed to denote derivatives with respect to x, and literal subscripts to denote partial derivatives.