proves this theorem * without giving reference to the less general theorem proved by Loewy which is mentioned at the end of my report on the groups of an infinite order. $\dagger$ Another test given in this paper for the finiteness of a linear substitution group on a finite number of symbols is that it contains a finite number of distinct sets of conjugate substitutions.

Quite recently Loewy has investigated the groups of linear homogeneous substitutions which are of the type of a finite group and gave a complete development of their theory. $\$$ Dickson has recently published two papers in which he considers for the first time the problem of representing a given finite group as a linear congruence group.§ He points out that the only one of the different expositions of Frobenius's theory of group characters mentioned above which may be utilized in the construction of a corresponding modular theory is that by Schur. While the developments of Frobenius relate to the representation of a given finite group as a non-modular linear group the work of Dickson employs a modulus in such a representation.

University of Illinois,
July, 1907.

## THE DRESDEN MEETING OF THE DEUTSCHE MATHEMATIKER-VEREINIGUNG.

The 1907 meeting of the Deutsche Mathematiker-Vereinigung was held in Dresden, September 15-21, in conjunction with the 79th convention of the Naturforscher und Aerzte. The meeting took place in room 80 of the Technische Hochschule. In commemoration of the 200th anniversary of Euler's birth a considerable number of the papers were devoted to an exposition of his services to science. The following papers were read :

1. K. Rohn, Leipzig: " Algebraic space curves" (report).
2. F. Klein, Göttingen : "Concerning the connection between the so-called theorem of oscillation of differential equations and the fundamental theorem of automorphic functions."
[^0]
[^0]:    * Burnside, Proc. London Math. Society, vol. 3 (1905), p. 435.
    $\dagger$ Bulletin, vol. 7 (1900), p. 121.
    $\ddagger$ Loewy, Mathematische Annalen, vol. 64 (1907), p. 264.
    \& Dickson, Transactions Amer. Math. Society, vol. 8 (1907), p. 389.

