NOTE ON THE NUMERICAL TRANSCENDENTS

$$
S_{n} \text { AND } s_{n}=S_{n}-1
$$

by professor w. woolsey johnson.

1. The numbers defined by the series

$$
S_{n}=1+\frac{1}{2^{n}}+\frac{1}{3^{n}}+\frac{1}{4^{n}}+\cdots,
$$

where n is a positive integer greater than unity, are of frequent occurrence in analysis. Euler, in the Institutiones Calculi Differentialis, 1775, gave a table of their values up to S_{16} to sixteen places of decimals (page 456). He had connected the values of the even-numbered ones with Bernoulli's numbers and the even powers of π by the formula

$$
S_{2 n}=\frac{2^{2 n-1} B_{n} \pi^{2 n}}{(2 n)!},
$$

but failed to obtain a finite expression for the odd-numbered ones. He gave also the value of the constant γ, now known as Euler's constant, defined as the limiting value

$$
\gamma=\left[1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}-\log n\right]_{n=\infty} .
$$

2. The constants. γ and S_{n} occur in the expressions for the function $\log \Gamma(1+x)$; and ${ }^{n}$ Legendre, for the purpose of constructing his table of $\log \Gamma(a)$, examined Euler's table of values for S_{n} and, finding "quelques erreurs assez graves," reconstructed the table, carrying it to S_{35}, remarking that for higher values of n one has only to divide the excess over unity successively by 2 . This is of course because the powers of $1 / 3$, $1 / 4$, etc., have disappeared from the last retained decimal place, which was as in Euler's table the sixteenth.

The values of S_{n} rapidly approach that of the first term, which is unity. It follows that, an algebraic series being given in which the S_{n} 's occur, if the series resulting from replacing S_{n} by unity has been already summed, we can by subtraction

