Incidentally, the value of ρ obtained in (9) shows that the torsion, unlike the curvature, is independent of v.

An arbitrary field of force (1) produces ∞^{5} trajectories, of which ∞^{1} pass through a given point in a given direction. These ∞^{1} trajectories have, at the given point, a common osculating plane and a common torsion. The locus of centers of their osculating spheres is a straight line. Thus every field of force gives rise to a correspondence between the direction elements and the straight lines of space.

Columbia University, August, 1905.

ON THE POSSIBLE NUMBERS OF OPERATORS OF ORDER 2 IN A GROUP OF ORDER 2^{m}.

BY PROFESSOR G. A. MILLER.

(Read before the American Mathematical Society, September 7, 1905.)
It is well known that every group of order 2^{m} which contains only one operator of order 2 is either cyclic or it is composed of the cyclic group of order 2^{m-1} and 2^{m-1} operators of order 4 transforming each operator of this cyclic group into its inverse.* There are exactly two such groups for every value of $m>2$. When $m=3$ the latter of these two is the quaternion group, and when $m<3$ the cyclic group is the only one that contains only one operator of order 2.

The groups of order 2^{m} in which the number of all the operators of order 2 is $\equiv 1$ mod. 4 have been determined incidentally in a recent paper. \dagger Such groups exist only when the number of operators of order 2 is of the form $2^{b}+1$, and there are exactly two possible groups for every arbitrary value of k. One of these is the dihedral rotation group of order 2^{k+1}, and the other is obtained by adding to the cyclie group of order 2^{k+1} an operator of order two which transforms each of its operators into its $\left(2^{t}-1\right)$ th power. Just half of the additional operators are of order two and the others are of order 4.

For instance, there are just two groups whose orders are of the form 2^{m} and which contain just five operators of order two;

[^0]
[^0]: * Burnside, Theory of groups, 1897, p. 75.
 \dagger Transactions Amer. Math. Society, vol. 6 (1905), p. 62.

