Incidentally, the value of ρ obtained in (9) shows that the torsion, unlike the curvature, is independent of v.

An arbitrary field of force (1) produces ∞^5 trajectories, of which ∞^1 pass through a given point in a given direction. These ∞^1 trajectories have, at the given point, a common osculating plane and a common torsion. The locus of centers of their osculating spheres is a straight line. Thus every field of force gives rise to a correspondence between the direction elements and the straight lines of space.

COLUMBIA UNIVERSITY, August, 1905.

ON THE POSSIBLE NUMBERS OF OPERATORS OF ORDER 2 IN A GROUP OF ORDER 2^m.

BY PROFESSOR G. A. MILLER.

(Read before the American Mathematical Society, September 7, 1905.)

It is well known that every group of order 2^m which contains only one operator of order 2 is either cyclic or it is composed of the cyclic group of order 2^{m-1} and 2^{m-1} operators of order 4 transforming each operator of this cyclic group into its inverse.* There are exactly two such groups for every value of m > 2. When m = 3 the latter of these two is the quaternion group, and when m < 3 the cyclic group is the only one that contains only one operator of order 2.

The groups of order 2^{m} in which the number of all the operators of order 2 is $\equiv 1 \mod 4$ have been determined incidentally in a recent paper.[†] Such groups exist only when the number of operators of order 2 is of the form $2^{k} + 1$, and there are exactly two possible groups for every arbitrary value of k. One of these is the dihedral rotation group of order 2^{k+1} , and the other is obtained by adding to the cyclic group of order 2^{k+1} an operator of order two which transforms each of its operators into its $(2^{k} - 1)$ th power. Just half of the additional operators are of order two and the others are of order 4.

For instance, there are just two groups whose orders are of the form 2^m and which contain just five operators of order two;

^{*} Burnside, Theory of groups, 1897, p. 75.

⁺ Transactions Amer. Math. Society, vol. 6 (1905), p. 62.