$$
r_{3}+r_{2} r_{1}-f_{3}+f_{2} r_{1}=0, r_{2}-f_{2}+r_{1}^{2}=0
$$

Multiply the new second column by $-f_{1}$ and add to the first. There results

$$
D_{25}=\left|\begin{array}{rrrl}
r_{5} & r_{4} & r_{3} & r_{2} \\
0 & 0 & -r_{1} & 1 \\
0 & -r_{1} & 1 & 0 \\
-r_{1} & 1 & 0 & 0
\end{array}\right|
$$

the eliminant of $r_{5}+r_{4} \rho+r_{3} \rho^{2}+r_{2} \rho^{3}=0,-r_{1}+\rho=0$.
For $n=4, s=3, D_{s n}$ is

$$
\left|\begin{array}{lll}
b_{32} & b_{31} & b_{30} \\
b_{31} & b_{30} & 0 \\
0 & 0 & 1
\end{array}\right|, \begin{aligned}
& b_{30}=r_{3} \\
& b_{31}=r_{4}+r_{3} f_{1} \\
& b_{32}=r_{4} f_{1}+r_{3} f_{2}
\end{aligned}
$$

the term r_{5} in b_{32} being dropped since $5>n(\S 3)$. Multiply the third column by $-f_{1}$ and $-f_{2}$ and add to the second and first columns, respectively. Multiply the new second column by $-f_{1}$ and add to the first. There results

$$
D_{34}=\left|\begin{array}{rrr}
0 & r_{4} & r_{3} \\
r_{4} & r_{3} & 0 \\
-r_{2} & -r_{1} & 1
\end{array}\right|,
$$

the eliminant of $r_{4}+r_{3} \rho=0,-r_{2}-r_{1} \rho+\rho^{2}=0$.
Chicago, December 8, 1904.

ON THE DEFORMATION OF SURFACES OF TRANSLATION.

BY DR. L. P. EISENHART.

(Read before the American Mathematical Society, February 25, 1905.)
In the January number of the Bulletin * Dr. Burke Smith states the following theorem : The only non-developable surfaces of translation which may be deformed so that their gener-

[^0]
[^0]: * "On the deformation of surfaces of translation," p. 187.

