NOTE ON CAUCHY'S INTEGRAL.

BY DR. O. D. KELLOGG.
(Read before the American Mathematical Society, December 28, 1903.)
The analogy between the formula given by Green for a potential function

$$
\begin{equation*}
u(x, y)=\frac{1}{2 \pi} \int_{C} u(s) \frac{\partial G}{\partial n} d s \tag{1}
\end{equation*}
$$

and Cauchy's integral representation of a complex function

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{C} f(c) \frac{d c}{c-z} d c \tag{2}
\end{equation*}
$$

has been pointed out;* the direct deduction of one from the other may be of interest.

We start with the case where the curve C is a circle of radius 1. Let $z=x+i y=r e^{i \vartheta}$ represent the variable point within the circle; let $c=a+i b=\rho e^{i s}$ represent a parameter point within or on the circle and $c^{\prime}=e^{i s} / \rho=c / \rho^{2}$ the reflection of the point c with respect to the circle. Then Green's function for the circle is the real part of $\log \left[c\left(z-c^{\prime}\right) /(z-c)\right]$, so that if \Re denote " the real part of," the formula (1) may be written

$$
u(x, y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(s) \frac{\partial}{\partial n} \Re \log \frac{c\left(z-c^{\prime}\right)}{z-c} d s
$$

Noting however that the real and imaginary parts of the logarithm are conjugate functions, \dagger we have, if $v(x, y)$ denote the function conjugate to $u(x, y)$,

[^0]\[

$$
\begin{equation*}
\partial G / \partial x=\partial H / \partial y, \quad \partial G / \partial y=-\partial H / \partial x \tag{a}
\end{equation*}
$$

\]

If the direction cosines of the given curve be $\cos \alpha(s), \cos \beta(s)$, then by definition

$$
\frac{\partial G}{\partial n}=-\frac{\partial G}{\partial a} \cos \beta(s)+\frac{\partial G}{\partial b} \cos a(s)
$$

[^0]: * See the article in the Encl. d. Math. Wiss: "Analytische Functionen complexer Grössen" (p. 17), by Professor Osgood, to whose suggestion this note is due.
 \dagger The fact that the derivatives with respect to the normal of a given curve with a determinate tangent of two conjugate functions G and H are still conjugate functions may be verified as follows. G and H satisfy the equations

