The necessary condition that (1) and (2) have two integrals in common is that, in the following matrix obtained by successive differentiation,

$$
\left\{\begin{array}{cccccc}
\alpha_{0} & \alpha_{0}^{\prime}+\alpha_{1} & \alpha_{1}^{\prime}+\alpha_{2} & \alpha_{2}^{\prime}+\alpha_{3} & \alpha_{0}^{\prime}+\alpha_{4} & \alpha_{4}^{\prime} \\
0 & \alpha_{0} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\beta_{0} & 2 \beta_{0}^{\prime}+\beta_{1} & \beta_{0}^{\prime \prime}+2 \beta_{1}^{\prime}+\beta_{2} & \beta_{1}^{\prime \prime}+2 \beta_{2}^{\prime}+\beta_{3} & \beta_{2}^{\prime \prime}+2 \beta_{3}^{\prime} & \beta_{3}^{\prime \prime} \\
0 & \beta_{0} & \beta_{0}^{\prime}+\beta_{1} & \beta_{1}^{\prime}+\beta_{2} & \beta_{2}^{\prime}+\beta_{3} & \beta_{3}^{\prime} \\
0 & 0 & \beta_{0} & \beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right\},
$$

the determinant consisting of the first five columns, and also that consisting of the first four columns and the sixth, shall vanish identically.
F. N. Cole.

Columbia University.

TWO SYSTEMS OF SUBGROUPS OF THE QUATERNARY ABELIAN GROUP IN A GENERAL GALOIS FIELD.

by PROFESSOR L. E. DICKSON.
(Read before the American Mathematical Society, August 31, 1903.)

1. Consider first the group G_{ω} composed of the

$$
\omega=p^{4 n}\left(p^{2 n}-1\right)\left(p^{n}-1\right)
$$

operators of the homogeneous quaternary abelian group in the $G F\left[p^{n}\right], p>2$, which multiply the variable η_{1} by a constant. Those of its operators which leave ξ_{1} and η_{1} unaltered are given the notation

$$
\left[\begin{array}{ll}
a & \gamma \\
\beta & \delta
\end{array}\right]: \begin{aligned}
& \xi_{2}^{\prime}=a \xi_{2}+\gamma \eta_{2}, \\
& \eta_{2}^{\prime}=\beta \xi_{2}+\delta \eta_{2}
\end{aligned} \quad(a \delta-\dot{\beta} \gamma=1)
$$

Certain other operators of G_{ω} are given the notation

$$
[k, a, c, \gamma]=\left(\left.\begin{array}{cccc}
1 & k & a & c \\
0 & 1 & 0 & 0 \\
0 & c-\gamma a & 1 & \gamma \\
0 & -a & 0 & 1
\end{array} \right\rvert\,\right.
$$

