INFINITESIMAL DEFORMATION OF THE SKEW HELICOID.

BY DR. L. P. EISENHART.
(Read before the American Mathematical Society, September 3, 1902.)
Consider the skew helicoid S, defined by the equations

$$
\begin{equation*}
x=u \cos v, \quad y=u \sin v, \quad z=a v \tag{1}
\end{equation*}
$$

We shall show that the problem of the infinitesimal deformation of this surface can be completely solved.

By direct calculation we find

$$
\begin{equation*}
E=\sum\left(\frac{\partial x}{\partial u}\right)^{2}=1, \quad F=\sum \frac{\partial x}{\partial u} \frac{\partial x}{\partial v}=0, \tag{2}
\end{equation*}
$$

$$
G=\sum\left(\frac{\partial x}{\partial v}\right)^{2}=u^{2}+a^{2},
$$

and

$$
\begin{equation*}
X, Y, Z=\frac{a \sin v,-a \cos v, u}{\sqrt{u^{2}+a^{2}}} \tag{3}
\end{equation*}
$$

where Y, X, Z denote the direction cosines of the normal. Again we find

$$
D=\sum X \frac{\partial^{2} x}{\partial u^{2}}=0, \quad D^{\prime}=\sum X \frac{\partial^{2} x}{\partial u \partial v}=\frac{-a}{\sqrt{u^{2}+a^{2}}},
$$

$$
\begin{equation*}
D^{\prime \prime}=\sum X \frac{\partial^{2} x}{\partial v^{2}}=0 . \tag{4}
\end{equation*}
$$

The characteristic equation of the deformation reduces in this case to

$$
\frac{\partial^{2} \phi}{\partial u \partial v}+\frac{u}{u^{2}+a^{2}} \frac{\partial \phi}{\partial v}=0
$$

of which the general integral is

$$
\begin{equation*}
\phi=\frac{U+V}{\sqrt{u^{2}+a^{2}}} \tag{5}
\end{equation*}
$$

