is even (2^{a_0}) then the subgroup must involve operators of order 4 and $a_0 > 3$. Since any number of these factors may be nonabelian, there cannot be an upper limit to the number of non-abelian groups which may be conformal with one abelian group. This fact may be seen in many other ways. STANFORD UNIVERSITY,

October, 1901.

THE INFINITESIMAL GENERATORS OF CERTAIN PARAMETER GROUPS.

BY DR. S. E. SLOCUM.

(Read before the American Mathematical Society, October 26, 1901.)

By means of the r independent infinitesimal transformations

$$X_{j} \equiv \sum_{1}^{n} \xi_{jk}(x_{1}, \cdots, x_{n}) \frac{\partial}{\partial x_{k}} \qquad (j = 1, 2, \cdots, r)$$

we may construct a family of transformations

(1)
$$x'_i = f_i(x_1, \dots, x_n, a_1, \dots, a_r)$$
 $(i = 1, 2, \dots, n)$

with r essential parameters a_1, \dots, a_r , where $f_i(x, a)$ is defined in the neighborhood of the identical transformation by the series

$$f_i(x, a) \equiv x_i + \sum_{j=1}^r a_j X_j x_i + \frac{1}{2!} \sum_{j=1}^r \sum_{j=1}^r X_j X_k x_i + \cdots$$
$$(i = 1, 2, \dots, n).$$

The transformations defined by these equations for assigned values of the *a*'s may be denoted by T_i . Let the differential operators X_j (j = 1, 2, ..., r) satisfy Lie's criterion, that is, let

$$X_{j}X_{k} - X_{k}X_{j} \equiv \sum_{1}^{r} c_{jks}X_{s} \quad (j, \ k = 1, \ 2, \ \cdots, \ r).$$

Then by Lie's chief theorem, the family of transformations T_a , defined by equations (1), forms a group G.* Conse-

^{*} Continuierliche Gruppen, pp. 390-391.