etc., these being of weight 4 and 6 respectively.
If the system of equations (2) is equivalent to a single linear differential equation of the second order, all of the invariants vanish, and conversely.

Any system of form (2) can be transformed into another for which $p_{i k}=0$. This is called the semicanonical form of the system. The subgroup G^{\prime} of G which leaves this form unchanged is examined. But we can fulfill the further condition $q_{11}+q_{22}=0$, and a system for which both $p_{12}=0$ and $q_{11}+q_{22}=0$, is said to be in the canonical form. The subgroup $G^{\prime \prime}$ of G^{\prime} which leaves this unchanged is a finite group of very simple form, and has some additional invariants of the form called quadri-derivatives by Forsyth.

Only a few simple results about covariants are mentioned. This and further generalizations are left for a future paper.
F. N. Cole.

Columbia University.

ON LINEAR DEPENDENCE OF FUNCTIONS OF ONE VARIABLE.

BY PROFESSOR MAXIME BÔCHER.
It is ordinarily stated that the identical vanishing of the determinant
is a sufficient* condition for the linear dependence of the functions $u_{1}(x), u_{2}(x), \cdots, u_{n}(x)$. This is perfectly true if the u 's are analytic functions of the complex variable x. This condition is however no longer sufficient if we are dealing with functions of a real variable, even though these functions possess derivatives of all orders for every real value of x. The truth of this statement will be seen from the example of two functions u_{1} and u_{2} defined as follows:

$$
u_{1}=\left\{\begin{array}{ll}
e^{-1 / x^{2}} & (x \neq 0) \\
0 & (x=0)
\end{array} \quad u_{2}= \begin{cases}e^{-1 / x^{2}} & (x>0) \\
0 & (x=0) \\
2 e^{-1 / x^{2}} & (x<0)\end{cases}\right.
$$

[^0]
[^0]: * It is of course a necessary condition provided the u 's have derivatives of the first $n-1$ orders.

