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THE general homogeneous entire polynomial of degree n
in £ variables # may be denoted by

Fn(xv Ly x};) = 209182 ey xlelx;z e xk%
where ¢, + ¢, + - + ¢,=n. Let
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represent the polynomial into which F'is converted by the
substitutions
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where the ’s are subject to a single restriction : their deter-
minant D shall not assume the value zero.
If there is such an entire homogeneous polynomial
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where ¢, + ¢, + - +¢,=m and where each coefficient A is
an entire homogeneous polynomial of degree p in the co-
efficients ¢ of F, that

(& & = E) =M, (2, @y ),

the y's entering the left member of the identity as the ¢’s
enter ¢, of the right member, then ¢ (2, z,, -, z,) is
named covariant or invariant of Faccording asm > 0or = 0.

Supposing such a function ¢ to exist, it remains to deter-
mine the nature of the factor M. The &’s and they’s being
linear respectively in the «’s and the ¢’s, the two members
of the identity in question are, apart from the factor M,
each of degree m in the a’s and of degree p in the ¢’s. It
follows that M is a function of the A’s only. M is, more-



