This theorem can also be immediately applied to Bessel's functions whose order is not zero. Let $F_n(x)$ be any real solution of Bessel's equation

(4)
$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{n^2}{x^2}\right)y = 0.$$

Using polar coördinates r, ϑ we have as a solution of (3) when n is real

$$u = \cos n\theta \cdot F_n(r),$$

when n is pure imaginary

$$u = e^{in\vartheta} \cdot F_n(r)$$
.

Applying the theorem just quoted to these solutions we get the theorems :

If $n^2 \leq 1$, $F_n(x)$ vanishes at least once in any interval of length $2c = 4.810 \cdots$ which does not include the origin.

If n > 1, $F_n(x)$ vanishes at least once in any interval of length 2c

throughout which
$$|x| > c \left[\csc \frac{\pi}{2n} - 1 \right]$$
.

As a special application I note that we thus get an upper limit for the value of the smallest root of $F_n(x)$ and thus in particular of $J_n(x)$.

HARVARD UNIVERSITY, CAMBRIDGE, MASS.

A GENERALIZATION OF APPELL'S FACTORIAL FUNCTIONS.

BY DR. E. J. WILCZYNSKI.

(Read before the American Mathematical Society at the Annual Meeting, December 28, 1898.)

Let
$$F(s,z) = 0$$

be an algebraic equation defining s as function of z. Let R, the corresponding Riemann's surface, be of class p. By a system of crosscuts a_1, \cdots, a_p ; b_1, \cdots, b_p ; c_1, \cdots, c_p the (2p+1)-ply connected surface R is changed into a simply connected surface R_{abc} .