ON THE DEFINITION OF LOGARITHMS.

by prof. mellen w. HASKELL,

After reading Professor Stringham's interesting paper* on " A Classification of Logarithmic Systems," and at his suggestion, I undertook to examine his definitions from the point of view of the theory of functions. The results of my investigation are embodied in the following paper. If I have taken the liberty of deriving some well-known formulw, I hope that at least the point of view will prove interesting.
Starting from Riemann's definition of the logarithm as that function $\phi(z)$ which satisfies the equation

$$
\begin{equation*}
\phi(u z)=\phi(u)+\phi(z), \tag{1}
\end{equation*}
$$

we can easily find an expression for the derivative of the logarithm in terms of the derivative of the independent variable as follows: \dagger Differentiating equation (1) on the assumption that z is constant, we have

$$
z \phi^{\prime}(u z)=\phi^{\prime}(u)
$$

whence, if we write $u=1$, it follows that

$$
z \phi^{\prime}(z)=\phi^{\prime}(1)
$$

The value of $\phi^{\prime}(1)$ can be chosen at will and is characteristic for the system of logarittims under consideration. It is called the modulus of the system, and we shall denote it by $M=m \operatorname{cis} \beta$.

Let us write $\phi(z)=w$, and denote time-derivates by dots. The last equation obtained can then be written

$$
\begin{equation*}
\dot{u}=M \frac{\dot{z}}{z} \tag{2}
\end{equation*}
$$

Writing $z=r \operatorname{cis} \theta$, we find by differentiation

$$
\begin{align*}
& \dot{z}=\dot{i} \operatorname{cis} \theta+r(-\sin \theta+i \cos \theta) \dot{\theta}=(\dot{r}+i r \dot{\theta}) \operatorname{cis} \theta \\
& =\left(\frac{\dot{r}}{r}+i \dot{\theta}\right) \boldsymbol{z}, \overrightarrow{,} . \tag{3}
\end{align*}
$$

whence follows immediately

$$
\begin{equation*}
\dot{w}=M_{z}^{\dot{z}}=M\left(\frac{\dot{r}}{r}+i \dot{\theta}\right) . \tag{4}
\end{equation*}
$$

[^0]
[^0]: * American Journal of Mathematics, vol. 14, p. 187.
 + See, for example, Durège, "Theorie der Funktiouen," 3. Aufl.

