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1 
The title may suggest that the book deals with the general theory 

of transcendental numbers. A complex number a is said to be al­
gebraic if it is a root of a polynomial f{x) = anxn H h axx + a0 

with rational coefficients and ƒ (JC) ^ 0. If a is not algebraic, it 
is called transcendental. In 1874, Cantor showed that the set of 
all algebraic numbers is countable so that transcendental numbers 
exist. The first rigorous proof of the existence of transcenden­
tal numbers was given thirty years earlier by Liouville. We say 
that a is of degree n, if the smallest degree of polynomials ƒ 
as described above equals n. Liouville proved the existence of 
a positive constant c(a) such that every pair of rational integers 
p, q with q > 0 and p/q ^ a satisfies 

(1) 
C(a) / • j r \ 

> - V 1 (fl is degree of a). 
q 

It is an easy consequence that numbers with very good ratio­
nal approximations, such as ]C^Li 2 " , are transcendental. After 
successive improvements of the exponent n due to Thue (1909), 
Siegel (1921) and Dyson, Gelfond (1947/1948), Roth (1955) 


