SCHRÖDINGER SEMIGROUPS

BY BARRY SIMON

ABSTRACT. Let \(H = -\frac{1}{2}\Delta + V \) be a general Schrödinger operator on \(\mathbb{R}^n \) (\(n \geq 1 \)), where \(\Delta \) is the Laplace differential operator and \(V \) is a potential function on which we assume minimal hypotheses of growth and regularity, and in particular allow \(V \) which are unbounded below. We give a general survey of the properties of \(e^{-tH} \), \(t > 0 \), and related mappings given in terms of solutions of initial value problems for the differential equation \(du/dt + Hu = 0 \). Among the subjects treated are \(L^p \)-properties of these maps, existence of continuous integral kernels for them, and regularity properties of eigenfunctions, including Harnack's inequality.

CONTENTS

A. Introduction
 A1. Overview
 A2. The class \(K_v \)
 A3. Literature on larger classes
B. \(L^p \)-properties
 B1. \(L^p \)-smoothing of semigroups
 B2. Sobolev estimates
 B3. Continuity and derivative estimates
 B4. Localization
 B5. Growth of \(L^p \)-semigroup norms as \(t \to \infty \)
 B6. Weighted \(L^2 \)-spaces
 B7. Integral kernels: General potentials
 B8. Integral kernels: Some special operators for some special potentials
 B9. Trace ideal properties
 B10. Continuity in \(V \)
 B11. Hypercontractive semigroups and all that
 B12. Some remarks on the case when \(H \) is unbounded below
 B13. The magnetic case
C. Eigenfunctions
 C1. Harnack's inequality and subsolution estimates
 C2. Local estimates on \(\nabla \phi \)
 C3. Decay of eigenfunctions
 C4. Eigenfunctions and spectrum
 C5. Eigenfunction expansions

Received by the editors March 4, 1982.
1980 Mathematics Subject Classification. Primary 81-02, 35-02; Secondary 47F05, 35P05.
© 1982 American Mathematical Society
0273-0979/82/0000-0350/121.00
447