CYCLIC ELEMENTS IN SOME SPACES OF ANALYTIC FUNCTIONS

BY BORIS KORENBLUM¹

DEFINITIONS. 1. A^{-p} (p > 0) is the Banach space of analytic functions f(z) in $U = \{z \in \mathbb{C} | |z| < 1\}$ that satisfy $|f(z)| = o[(1 - |z|)^{-p}]$ $(|z| \rightarrow 1)$ with the norm $||f|| = \max\{|f(z)|(1 - z)^p\}$ $(z \in U)$. Note that $f_n \rightarrow f$ in A^{-s} and $g_n \rightarrow g$ in A^{-t} implies $f_n g_n \rightarrow fg$ in $A^{-(s+t)}$.

2. \mathcal{B}^p (p > 0) is the Bergman space, i.e., the "analytic" subspace of $L^p(rdrd\theta)$ in U.

3. $A^{-\infty} = \bigcup A^{-p} = \bigcup B^p$ (p > 0). $A^{-\infty}$ is a linear topological space [1].

4. P is the set of all algebraic polynomials P(z). P is dense in any of the spaces A^{-p} , B^p , $A^{-\infty}$.

5. Let A be any of the spaces A^{-p} , B^p , $A^{-\infty}$ and let $f \in A$. The *ideal* generated by f in A is defined by

$$I(f; A) = \operatorname{clos} \{ fP | P \in P \}.$$

If f is bounded, then also $I(f; A) = clos \{ fg | g \in A \}$.

6. An $f \in A$ is called cyclic in A if I(f; A) = A.

7. A closed set $E \subset \partial U$ is called a *Carleson set* if its Lebesgue measure |E| = 0 and $\sum_n |I_n| \log(2\pi/|I_n|) < \infty$, where I_n are the components of $\partial U \setminus E$.

THEOREM. A singular inner function

$$s(z) = \exp\left\{-\frac{\zeta+z}{\zeta-z}d\nu(\zeta)\right\},\,$$

where v is a nonnegative singular measure on ∂U , is cyclic in any (and hence in all) of the spaces $A^{-\infty}$, A^{-p} , B^p if and only if v(E) = 0 for all Carleson sets E.

The "only if" part is due to H. S. Shapiro [2]. The case $A^{-\infty}$ was treated in [3]. Some partial results in a different direction are due to Daniel H. Luecking.

Since every A^{-p} is a dense subset of some $B^{p'}$, and vice versa, it suffices to prove the Theorem for A^{-p} . Now we use the following result from [3]; it is, roughly, equivalent to the above Theorem for $A^{-\infty}$.

Received by the editors March 18, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30H05.

¹This research was supported by NSF grants MCS78-01878 and MCS80-03413.

^{© 1981} American Mathematical Society 0002-9904/81/0000-0504/\$01.50