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ABSTRACT WAVE EQUATIONS WITH FINITE
VELOCITY OF PROPAGATION!
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Communicated by Ray A. Kunze, June 22, 1971

Let G be a locally compact abelian group. Let L2(G) be the Hilbert
space of all complex-valued functions on G that are measurable and
square-integrable with respect to Haar measure on G. Let B be a self-
adjoint translation-invariant operator in L2%(G), not necessarily
bounded, and consider the abstract wave equation

d*u/dt?* + Bu = 0

where # is a function from the nonnegative real axis to L?(G). For
any ¢ and ¢ in L%(G), a solution is given by

sin tB
*) u(t) = (cos tB)¢ + (T) ¥,

in the sense that

2

' (u(®), w) + (4, B'w) = 0

for all w in the domain of B2, where (-, -) denotes the usual inner
product in L%(G). In the classical case in which G is an n-dimensional
Euclidean space R* and — B? is the Laplacian, the solution (*) has
the property that if ¢ and Y have compact support then so does %(¢)
for all £>0. In fact, there exists a compact subset K, of R", indepen-
dent of ¢ and ¢, such that supp % (¢) C (supp ¢\Isupp ¢¥)+ K., where
supp f denotes the support of f. Our first theorem says that on R* this
is essentially the only operator B for which the abstract wave equa-
tion has this property, which we call finite velocity of propagation.
Recall now that if B is a selfadjoint translation-invariant operator in
L2%(G), then there must exist a real measurable function 8 on the dual
group T of G such that (Bf)” =g/, where f denotes the Fourier trans-
form of f.
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