EMBEDDING SPHERES AND BALLS IN CODIMENSION ≤2

BY MITSUYOSHI KATO1

Communicated by William Browder, April 28, 1969

1. Introduction. In this note we announce some results on existence of PL embeddings of n-spheres and n-balls into a compact (n-1)-connected q-manifold $(n \ge q-2)$ by extending techniques of our preceding papers [5], [4]. Details will appear later. The result for locally flat embeddings with codimension two is satisfactory, although in general the low dimensional cases are still open.

By $\bigcup_{k=1}^{r} D_{k}^{n}$, $\bigcup_{k=1}^{r} S_{k}^{n}$ we denote the disjoint unions of r copies of the standard PL n-ball D^{n} , the standard PL n-sphere $S^{n} = \partial D^{n+1}$, resp. The embedding theorem of balls in codimension ≤ 2 is as follows:

THEOREM A. Let Q be a compact (n-1)-connected PL q-manifold with nonempty boundary ∂Q .

Let $\phi: \bigcup_{k=1}^{n} D_{k}^{n} \to Q$ be a map such that $\phi(\bigcup_{k=1}^{n} S_{k}^{n-1}) \subset \partial Q$ and $\phi[\bigcup_{k=1}^{n} S_{k}^{n-1} \text{ is a PL embedding.}]$

- (I). Suppose that one of the following holds.
 - (0) $q = n \neq 3, 4,$
 - (1) $q = n + 1 \neq 4$,
 - (2) $q = n + 2 \neq 4$ and r = 1.

Then ϕ is homotopic to a proper PL embedding $f: \bigcup_{k=1}^r D_k^n \to Q$ keeping $\phi | \bigcup_{k=1}^r S_k^{n-1}$ fixed.

- (II). Suppose that $\phi | \bigcup_{k=1}^r S_k^{n-1}$ is locally flat, and that
 - (1) $q = n + 1 \neq 4$ or
 - (2) $q = n + 2 = odd \ and \ r = 1$.

Then ϕ is homotopic to a locally flat PL embedding $f: \bigcup_{k=1}^r D_k^n \to Q$ keeping $\phi | \bigcup_{k=1}^r S_k^{n-1}$ fixed.

(Refer to [13, Chapter 8, Corollary 5].)

In case q-n=0, Theorem A, (I) is equivalent to the generalized Poincaré conjecture. In case q=n+1=4, Theorem A is still open. In case n=2 and $Q=D^4$, refer to [13, Chapter 8, Counterexample 1].

In case q=n+2= even, Theorem A, (II) is false because of the existence of nonslice knots ([1] and [6, Chapter III]).

The embedding theorem of spheres in codimension ≤ 2 is as follows:

¹ Work supported in part by Sakkokai Foundation and National Science Foundation grant GP-7952X.