THE GENUS OF $K_{n}, n=12\left(2^{m}\right)$

BY C. M. TERRY, L. R. WELCH, AND J. W. T. YOUNGS

Communicated by G. Whaples, February 25, 1965
Introduction. It is the object of this note to display a minimal imbedding of K_{n}, the complete graph on n vertices with $n=12\left(2^{m}\right)$, $m=0,1,2, \cdots$. (See [5] for notation and terminology.) A minimal imbedding of K_{n} with $n=12\left(2^{m}\right)(2 t+1)$ and $t=1,2, \cdots$ has also been obtained, but will be discussed elsewhere. All the imbeddings are triangular, and hence an easy computation involving the Euler formula shows that the genus of K_{n} is $(n-3)(n-4) / 12$ for $n=12 s$, $s=1,2,3, \cdots$. For the connection between these results and the Heawood conjecture one may consult Ringel [3].

The method employed was announced by Gustin [2] and generalized by him to include the case in which the group used to name the vertices is non-Abelian, and "knobs" are permitted in the "quotient" network. The technique involves the delicate matching of a group to the geometry of a network, and in all other applications the group has been Abelian. On the other hand it can be shown that if the index of the solution is to be 1 , as it is here, then the use of non-Abelian groups is essential.

The group. An appropriate group will be defined as the normal (or semi-direct) product (see [1, p. 88]) of a certain finite group and a group of its automorphisms. The finite group will be the additive group in a certain finite field and the multiplicative structure of the field will play a leading role in defining the automorphisms.

The following facts about finite fields will be used. (See [4, pp. 91-118].)
(1) For $k=1,2, \cdots$ there is a finite field $\mathrm{GF}\left(2^{k}\right)$, the Galois field of order 2^{k}.
(2) If $p \in \mathrm{GF}\left(2^{k}\right)$ then $p+p=0$.
(3) The multiplicative group in $\mathrm{GF}\left(2^{k}\right)$, here called $F^{*}\left(2^{k}\right)$, is cyclic. Suppose θ is a generator, then the order of θ is $\left(2^{k}-1\right)$.
(4) If $F^{+}\left(2^{k}\right)$ is the additive group in GF $\left(2^{k}\right)$, then $1, \theta, \theta^{2}, \cdots$, θ^{k-1} is a basis for $F^{+}\left(2^{k}\right)$ over $F^{+}(2)$.

Using the exponential notation for an automorphism, define an automophism α of $F^{+}\left(2^{k}\right)$ by the linear extension of the following mapping of the generators:

