LOCALLY FLAT STRINGS

BY CHARLES GREATHOUSE

Communicated by M. L. Curtis, February 4, 1964

I. The Schoenflies Theorem for strings. In [1], Stallings defines a string of type (n, k) to be a pair (R^n, Y) , where Y is a closed subset of R^n such that Y is homeomorphic to R^k . Similarly, he defines a pair (S^n, X) , where X is homeomorphic to S^k , to be a knot of type (n, k). A pair (A, X) of (n, k)-manifolds is said to be locally smooth if each point of X has a neighborhood U in A such that the pair $(U, U \cap X)$ is homeomorphic to the pair (R^n, R^k) . Thus, his definition of locally smooth is equivalent to Brown's [2] definition of locally flat.

Let (R^n, Y) be a locally smooth string of type (n, n-1); Y separates R^n into two components whose closures are A and B. In [1], Stallings states that it seems possible that either A or B must be homeomorphic to a closed half-space of R^n . Harrold and Moise [3] have proved this for n=3. In this note we observe that both A and B are closed half-spaces of R^n for n>3 and hence we have a Schoenflies theorem for strings of type (n, n-1) for n>3.

THEOREM I.1. Let (R^n, Y) be a locally flat string of type (n, n-1) and let A and B be the closures of the complementary domains of Y in R^n . Then A and B are homeomorphic to a closed half-space of R^n for n>3.

COROLLARY I.2. Let (R^n, Y) be a locally flat string of type (n, n-1) for n > 3. Then (R^n, Y) is trivial, that is, there is a homeomorphism h of (R^n, Y) onto $(R^n, R^{n-1} \times 0)$.

COROLLARY I.3. Let f_1 , f_2 be two locally flat embeddings of R^{n-1} as a closed subset of R^n for n > 3. Then there is a homeomorphism h of R^n onto R^n such that $hf_1 = f_2$.

Theorem I.1 follows immediately from a recent result of Cantrell's [4]. Cantrell showed that a knot (S^n, Y) of type (n, n-1) is trivial for n>3 provided Y is locally flat except at one point. Thus, if (R^n, X) is a locally flat string of type (n, n-1) and (S^n, Y) is the one point compactification of (R^n, X) , Y is locally flat except at the compactification point. Hence (S^n, Y) is trivial for n>3 and Theorem I.1 follows.

II. The Slab Conjecture. In this section we consider the relationship of locally flat strings of type (n, n-1) to the Annulus Conjecture. We now state the Annulus Conjecture.