466t. L. A. Zadeh: Initial conditions in linear varying-parameter systems.

Consider a linear varying-parameter system N whose behavior is described by an nth order linear differential equation L(p; t)v(t) = u(t). Let u(t) be zero for t < 0 and let the initial values of v(t) and its derivatives be $v^{(p)}(0) = \alpha_p (v=0, 1, \dots, n-1)$. Let H(s; t) be the system function of N. When the system is initially at rest (that is, all α_p are zero), the response of N to u(t) may be written as $v(t) = \int_{-1}^{-1} \{H(s; t) U(s)\}$ (see abstract 56-6-465). When, on the other hand, some of the α_p are not zero, the expression for the response to a given input u(t) becomes $v(t) = \int_{-1}^{-1} \{H(s; t) [U(s) + \Delta(s)]\}$, where $\Delta(s)$ is a polynomial in s and p_0 given by $\Delta(s) = \{[L(s; 0) - Lp_0; 0)]/(s - p_0)\}v$ (p_0 represents a differential operator such that $p_0^{r_0} = v^{(\nu)}(0) = \alpha_p$). $\Delta(s)$ is essentially the Laplace transform of a linear combination of delta-functions of various order (up to n-1) such that the initial values of the derivatives of the response of N to this combination are equal to α_p . (Received September 14, 1950.)

TOPOLOGY

467t. A. L. Blakers and W. S. Massey: Generalized Whitehead products.

J. H. C. Whitehead has defined (Ann. of Math. vol. 42 (1941) pp. 409-428) a product which associates with elements $\alpha \in \pi_p(X)$ and $\beta \in \pi_q(X)$, an element $[\alpha, \beta]$ $\in \pi_{p+q-1}(X)$. The authors show how to define three new products, as follows: (a) A product which associates with elements $\alpha \in \pi_p(A)$ and $\beta \in \pi_q(X, A)$, an element $[\alpha, \beta] \in \pi_{p+q-1}(X, A)$. (b) A product which associates with elements $\alpha \in \pi_p(A/B)$ and $\beta \in \pi_q(A \cap B)$, an element $[\alpha, \beta] \in \pi_{p+q-1}(A/B)$. Here the sets A and B are a covering of the space $X = A \cup B$, and $\pi_p(A/B)$ is the p-dimensional homotopy group of this covering which has been introduced by the authors (Bull. Amer. Math. Soc. Abstract 56-3-208). (c) Let (X; A, B) be a triad (see A. L. Blakers and W. S. Massey, Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) p. 323), then there is a product which associates with elements of $\pi_p(A/B)$ and $\pi_q(X, A \cap B)$ an element of $\pi_{p+q-1}(X; A, B)$. The bilinearity of these three new products is established under suitable restrictions, and relationships between the various products are proved. The behavior of the products under homomorphisms induced by a continuous map or a homotopy boundary operator is also studied. (Received August 30, 1950.)

468t. A. L. Blakers and W. S. Massey: The triad homotopy groups in the critical dimension.

Let $X^* = X \bigcup \xi_1^n \bigcup \xi_2^n \bigcup \cdots \bigcup \xi_k^n$ be a space obtained by adjoining the *n*-dimensional (n > 2) cells ξ_i^n to the connected, simply connected topological space X. Let $\xi^n = \xi_1^n \bigcup \xi_2^n \bigcup \cdots \bigcup \xi_k^n$ and $\xi^n = X \bigcap \xi^n$. Assume that the space ξ^n is arcwise connected, and that the relative homotopy groups $\pi_p(X, \xi^n)$ are trivial for $1 \le p \le m$, where $m \ge 1$. Then it is known that the triad homotopy groups $\pi_q(X^*; \xi^n, X)$ are trivial for $2 \le q \le m + n - 1$. The authors now show that under the assumption of suitable "smoothness" conditions on the pair (X, ξ^n) (for example, both X and ξ^n are compact A.N.R.'s), there is a natural isomorphism of the tensor product $\pi_n(\xi^n, \xi^n) \otimes \pi_{m+1}(X/\xi^n)$ onto the triad homotopy group $\pi_{m+n}(X^*; \xi^n, X)$. This isomorphism is defined by means of a generalized Whitehead product. The Freudenthal "Einhängung" theorems in the critical dimensions can easily be derived from this theorem;

540