A NOTE ON LACUNARY POLYNOMIALS
MORRIS MARDEN

1. Introduction. In the present note we shall give an elementary
derivation of some new bounds for the p smallest (in modulus) zeros
of the polynomials of the lacunary type

(1.1) f&) =a0o+ a1z 4 -+ - + 2% + Gu2™ + 2™ + - -« + ay2™,

a6, 70, 0<p=n<m< -+ < up.
This will be done by the iterated application, first, of Kakeya's
Theorem! that, if a polynomial of degree # has ¢ zeros in a circle C

of radius R, its derivative has at least p—1 zeros in the concentric
circle C’ of radius R’ =R¢(n, p); and, secondly, of the specific limits

(1.2) o(n, p) < csc [1/2(n — p + 1)],
(1.3) o(n, p) < p (n+ )/t — j)

furnished by Marden? and Biernacki® respectively.

2. Derivation of the bounds. An immediate corollary to Kakeya’s
Theorem is:

THEOREM L. If the derivative of an nth degree polynomial P(2) has at
most p—1 zeros in a circle ' of radius p, then P(2) has at most p zeros in
the concentric circle I'' of radius p’ =p/¢p(n, p+1).

We shall use Theorem I to prove the following theorem.
THaEOREM I1. If all the zeros of the polynomial

@.1) fo(3) = namg -+ + nxao + (1 — D(wa — 1)+ -+ (nx — Naws
. + ot (= p) (2 — ) - - - (me — P)apz?

lie in the circle |3| S Ro, at least p zeros of polynomial (1.1) lie in the
circle
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